scholarly journals Therapeutic effects of pravastatin on asthmatic airway inflammation in high fat diet induced obese mouse asthma model.

2019 ◽  
Vol 143 (2) ◽  
pp. AB307
Author(s):  
Hwayoung Lee ◽  
Jung Hur ◽  
Chin Kook Rhee ◽  
Ji Young Kang ◽  
Sook Young Lee
2015 ◽  
Vol 35 (6) ◽  
pp. 2349-2359 ◽  
Author(s):  
Youli Xi ◽  
Miaozong Wu ◽  
Hongxia Li ◽  
Siqi Dong ◽  
Erfei Luo ◽  
...  

Background/Aims: Obesity-associated fatty liver disease affects millions of individuals. This study aimed to evaluate the therapeutic effects of baicalin to treat obesity and fatty liver in high fat diet-induced obese mice, and to study the potential molecular mechanisms. Methods: High fat diet-induced obese animals were treated with different doses of baicalin (100, 200 and 400 mg/kg/d). Whole body, fat pad and liver were weighed. Hyperlipidemia, liver steatosis, liver function, and hepatic Ca2+/CaM-dependent protein kinase kinase β (CaMKKβ) / AMP-activated protein kinase (AMPK) / acetyl-CoA carboxylase (ACC) were further evaluated. Results: Baicalin significantly decreased liver, epididymal fat and body weights in high fat diet-fed mice, which were associated with decreased serum levels of triglycerides, total cholesterol, LDL, alanine transaminase and aspartate transaminase, but increased serum HDL level. Pathological analysis revealed baicalin dose-dependently decreased the degree of hepatic steatosis, with predominantly diminished macrovesicular steatosis at lower dose but both macrovesicular and microvesicular steatoses at higher dose of baicalin. Baicalin dose-dependently inhibited hepatic CaMKKβ/AMPK/ACC pathway. Conclusion: These data suggest that baicalin up to 400 mg/kg/d is safe and able to decrease the degree of obesity and fatty liver diseases. Hepatic CaMKKβ/AMPK/ACC pathway may mediate the therapeutic effects of baicalin in high fat diet animal model.


Amino Acids ◽  
2018 ◽  
Vol 51 (2) ◽  
pp. 245-254 ◽  
Author(s):  
Kyoung Soo Kim ◽  
Min Ju Jang ◽  
Sungsoon Fang ◽  
Seul Gi Yoon ◽  
Il Yong Kim ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Wycliffe Makori Arika ◽  
Cromwell Mwiti Kibiti ◽  
Joan Murugi Njagi ◽  
Mathew Piero Ngugi

Chronic exposures to high-fat diets are linked to neuropathological changes that culminate in obesity-related cognitive dysfunction and brain alteration. Learning, memory performance, and executive function are the main domains affected by an obesogenic diet. There are limited effective therapies for addressing cognitive deficits. Thus, it is important to identify additional and alternative therapies. In African traditional medicine, Gnidia glauca has putative efficacy in the management of obesity and associated complications. The use of Gnidia glauca is largely based on its long-term traditional use. Its therapeutic application has not been accompanied by sufficient scientific evaluation to validate its use. Therefore, the current study sought to explore the modulatory effects of dichloromethane leaf extracts of Gnidia glauca on cognitive function in the high-fat diet- (HFD-) induced obese rats. Obesity was induced by feeding the rats with prepared HFD and water ad libitum for 6 weeks. The in vivo antiobesity effects were determined by oral administration of G. glauca at dosage levels of 200, 250, and 300 mg/kg body weight in HFD-induced obese rats from the 6th to the 12th weeks. The Lee obesity index was used as a diagnostic criterion of obesity. The Morris water maze was employed to test spatial learning and memory retention in rats. The results indicated that Gnidia glauca showed potent antiobesity effects as indicated in the reduction of body weight and obesity index in extract-treated rats. Moreover, Gnidia glauca exhibited cognitive-enhancing effects in obese rats. The positive influences on cognitive functions might be attributed to the extracts’ phytochemicals that have been suggested to confer protection against obesity-induced oxidative damage, reduction of central inflammation, and increased neurogenesis. The therapeutic effects observed suggest that Gnidia glauca might be an alternative to current medications for the symptomatic complications of obesity, such as learning and memory loss. Further studies are therefore needed to establish its toxicity profiles.


2020 ◽  
Vol 11 (1) ◽  
pp. 1133-1145 ◽  
Author(s):  
Xiaobing Yang ◽  
Chunrui Lin ◽  
Shuang Cai ◽  
Wenzhi Li ◽  
Jian Tang ◽  
...  

This study aims to compare the therapeutic effects of noni fruit water extract (NFW) and noni fruit polysaccharide (NFP) on oxidative stress and inflammation in mice under high-fat diet.


2020 ◽  
Vol 72 (12) ◽  
pp. 1921-1932
Author(s):  
Thamires Barros Tavares ◽  
Izabelle Barcellos Santos ◽  
Graziele Freitas Bem ◽  
Dayane Teixeira Ognibene ◽  
Ana Paula Machado Rocha ◽  
...  

Inflammation ◽  
2017 ◽  
Vol 40 (3) ◽  
pp. 1072-1086 ◽  
Author(s):  
Hiroki Tashiro ◽  
Koichiro Takahashi ◽  
Hironori Sadamatsu ◽  
Go Kato ◽  
Keigo Kurata ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Ho-Yeol Cha ◽  
Sang-hyun Ahn ◽  
Jin-Hong Cheon ◽  
In-Sik Park ◽  
Jin-Tack Kim ◽  
...  

This study investigated the preventive therapeutic effects of Hataedock (HTD) treatment on inflammatory regulation and skin protection in AD-induced NC/Nga mice under high-fat diet conditions. Before inducing AD, the extract ofCoptidis RhizomaandGlycyrrhiza uralensiswas administered orally to the 3-week-old mice. After that, AD-like skin lesions were induced by applying DNFB. All groups except the control group were fed a high-fat diet freely. We identified the effects of HTD on morphological changes, cytokine release and the induction of apoptosis through histochemistry, immunohistochemistry, and TUNEL assay. HTD downregulated the levels of IL-4 and PKC but increased the levels of LXR. HTD also suppressed the mast cell degranulation and release of MMP-9, Substance P. The levels of TNF-α, p-IκB, iNOS, and COX-2 were also decreased. The upregulation of inflammatory cell’s apoptosis is confirmed by our results as increase of apoptotic body and cleaved caspase-3 and decrease of Bcl-2. HTD also reduced edema, angiogenesis, and skin lesion inflammation. Our results indicate HTD suppresses various inflammatory response on AD-induced mice with obesity through the regulation of Th2 differentiation and the protection of lipid barrier. Therefore, HTD could be used as an alternative and preventive therapeutic approach in the management of AD.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Tao Zhong ◽  
Xiao-Yue Duan ◽  
Hao Zhang ◽  
Li Li ◽  
Hong-Ping Zhang ◽  
...  

The root of Angelica sinensis (RAS) is a traditional Chinese medicine used for preventing and treating various diseases. In this study, we assessed RAS supplementation effects on body weight and the FTO gene expression and methylation status in a high-fat-diet (HFD) induced obese mouse model. Female obese mice were divided into groups according to RAS dosage in diet as follows: normal diet, HFD diet (HC), HFD with low-dosage RAS (DL), HFD with medium-dosage RAS (DM), and HFD with high-dosage RAS (DH). After RAS supplementation for 4 weeks, body weight suppression and FTO expression in DH mice were significantly higher than in HC mice, whereas no significant change in FTO expression was detected between DM and DL mice or in their offspring. Bisulfite sequencing PCR (BSP) revealed that the CpG island in the FTO promoter was hypermethylated up to 95.44% in the HC group, 91.67% in the DH group, and 90.00% in the normal diet group. Histological examination showed that adipocytes in the DH group were smaller than those in the HC group, indicating a potential role of RAS in obesity. This study indicated that RAS could ameliorate obesity induced by HFD and that the molecular mechanism might be associated with the expression of the FTO gene.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 5033
Author(s):  
Deokyeong Choe ◽  
Eun-Sook Lee ◽  
Alicia Beeghly-Fadiel ◽  
Andrew J. Wilson ◽  
Margaret M. Whalen ◽  
...  

Obesity contributes to ovarian cancer (OC) progression via tumorigenic chemokines. Adipocytes and OC cells highly express CXCR2, and its ligands CXCL1/8, respectively, indicating that the CXCL1/8-CXCR2 axis is a molecular link between obesity and OC. Here, we investigated how the adipocyte-specific CXCR2 conditional knockout (cKO) affected the peritoneal tumor microenvironment of OC in a high-fat diet (HFD)-induced obese mouse model. We first generated adipocyte-specific CXCR2 cKO in mice: adipose tissues were not different in crown-like structures and adipocyte size between the wild-type (WT) and cKO mice but expressed lower levels of CCL2/6 compared to the obese WT mice. HFD-induced obese mice had a shorter survival time than lean mice. Particularly, obese WT and cKO mice developed higher tumors and ascites burdens, respectively. The ascites from the obese cKO mice showed increased vacuole clumps but decreased the floating tumor burden, tumor-attached macrophages, triglyceride, free fatty acid, CCL2, and TNF levels compared to obese WT mice. A tumor analysis revealed that obese cKO mice attenuated inflammatory areas, PCNA, and F4/80 compared to obese WT mice, indicating a reduced tumor burden, and there were positive relationships between the ascites and tumor parameters. Taken together, the adipocyte-specific CXCR2 cKO was associated with obesity-induced ascites despite a reduced tumor burden, likely altering the peritoneal tumor microenvironment of OC.


Sign in / Sign up

Export Citation Format

Share Document