Investigation of kinetics and absorption isotherm models for hydroponic phytoremediation of waters contaminated with sulfate

2018 ◽  
Vol 207 ◽  
pp. 276-291 ◽  
Author(s):  
Ali Saber ◽  
Milad Tafazzoli ◽  
Soroosh Mortazavian ◽  
David E. James
2014 ◽  
Vol 16 (4) ◽  
pp. 597-608 ◽  

<div> <p>Removal of Fe(II) and Mn(II) ions from aqueous solution by fungal biosorbent <em>Aspergillus sp. TU-GM14</em>immobilized on <em>Detarium microcarpum</em> matrix was investigated in this study. Effects of biosorption parameters pH, biosorbent concentration, bead size and equilibrium time on Fe(II) and Mn(II) ions sorption were also determined. Equilibrium was attained within in 3 hours while optimum Fe(II) and Mn(II) ions removal was observed at pH 6, 8 mm bead size, 2 g l<sup>-1</sup> spore load respectively. Adsorption capacity was described using Langmuir, Freundlich and BET isotherm models. The experimental data fitted best to the Freundlich model (<em>R</em><sup>2</sup> 0.992 and 0.996 for Mn(II) and Fe(II) respectively). Favourable surface sorption process was described by Langmuir isotherm for both metals (<em>Q</em><sub>max </sub>34 and 14 mg g<sup>-1</sup> for Mn(II) and Fe(II) ions) while the BET isotherm constant, <em>B</em>, described high metals sorption beyond the biosorbent surface in a multi-layer sorption process (4.8 and 9.0 for Mn(II) and Fe(II)&nbsp; respectively). Results of the study showed that <em>Aspergillus sp. TU-GM14 </em>biosorbent can remove large quantities of Fe(II) and Mn(II) ions from solution in both surface and multi-layer sorption process with <em>Detarium microcarpum</em> acting as a cheap immobilization matrix.</p> </div> <p>&nbsp;</p>


2019 ◽  
Author(s):  
Chem Int

Dodecyltrimethylammonium bromide (DTAB)–modified and unmodified calcium bentonite were both used for the competitive adsorption of aromatics (xylene, ethylbenzene and toluene) and petroleum products (gasoline, dual purpose kerosene and diesel) from their aqueous solution. Infrared spectroscopy (IR) and expansion tests (adsorption capacity and Foster swelling) measurement were performed in order to evaluate the performance of the adsorbents. The Foster swelling index and adsorption capacity of the DTAB modified calcium bentonite in the organic solvents follow the trend: xylene &gt; ethylbenzene &gt; toluene &gt; gasoline &gt; dual purpose kerosene (DPK) &gt; diesel &gt; water. However, the adsorption capacity of the adsorbent in diesel outweighed the adsorption capacity in DPK at high concentration of DTAB indicating that diesel has higher affinity for high DTAB concentration than DPK. The percentage removal of the solvent is directly proportional to the concentration of DTAB used in modifying the bentonite as well as the contact time between the adsorbent and the solvent, hence modified calcium bentonite adsorbed a higher percentage of organic solvents than the unmodified calcium bentonite. The adsorption characteristics of both adsorbents improved remarkably after proper agitation of the organic solvents, the unmodified calcium bentonite however adsorbed more water than the modified bentonite. Data obtained from adsorption isotherm models confirms that Freundlich adsorption isotherm model was favored more than Langmuir adsorption isotherm model with the correlation factor (R2) of the former tending more towards unity. The adsorption of ethylbenzene using DTAB modified and unmodified calcium bentonites follow a pseudo second order kinetics mechanism, suggesting that the rate determining step of adsorption involves both the adsorbent and the organic solvent.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Péter Sipos

AbstractStudies comparing numerous sorption curve models and different error functions are lacking completely for soil-metal adsorption systems. We aimed to fill this gap by studying several isotherm models and error functions on soil-metal systems with different sorption curve types. The combination of fifteen sorption curve models and seven error functions were studied for Cd, Cu, Pb, and Zn in competitive systems in four soils with different geochemical properties. Statistical calculations were carried out to compare the results of the minimizing procedures and the fit of the sorption curve models. Although different sorption models and error functions may provide some variation in fitting the models to the experimental data, these differences are mostly not significant statistically. Several sorption models showed very good performances (Brouers-Sotolongo, Sips, Hill, Langmuir-Freundlich) for varying sorption curve types in the studied soil-metal systems, and further models can be suggested for certain sorption curve types. The ERRSQ error function exhibited the lowest error distribution between the experimental data and predicted sorption curves for almost each studied cases. Consequently, their combined use could be suggested for the study of metal sorption in the studied soils. Besides testing more than one sorption isotherm model and error function combination, evaluating the shape of the sorption curve and excluding non-adsorption processes could be advised for reliable data evaluation in soil-metal sorption system.


2013 ◽  
Vol 295-298 ◽  
pp. 1154-1160 ◽  
Author(s):  
Guo Zhi Deng ◽  
Xue Yuan Wang ◽  
Xian Yang Shi ◽  
Qian Qian Hong

The objective of this paper is to investigate the feasibility of phenol adsorption from aqueous solution by Pinus massoniana biochar. Adsorption conditions, including contact time, initial phenol concentration, adsorbent dosage, strength of salt ions and pH, have been investigated by batch experiments. Equilibrium can be reached in 24 h for phenol from 50 to 250 mg• L-1. The optimum pH value for this kind of biochar is 5.0. The amount of phenol adsorbed per unit decreases with the increase in adsorbent dosage. The existence of salt ions makes negligible influence on the equilibrium adsorption capacity. The experimental data is analyzed by the Freundlich and Langmuir isotherm models. Equilibrium data fits well to the Freundlich model. Adsorption kinetics models are deduced and the pseudo-second-order kinetic model provides a good correlation for the adsorbent process. The results show that the Pinus massoniana biochar can be utilized as an effective adsorption material for the removal of phenol from aqueous solution.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 510
Author(s):  
Majeda Khraisheh ◽  
Fares. Almomani ◽  
Gavin Walker

The separation of C3H4/C3H6 is one of the most energy intensive and challenging operations, requiring up to 100 theoretical stages, in traditional cryogenic distillation. In this investigation, the potential application of two MOFs (SIFSIX-3-Ni and NbOFFIVE-1-Ni) was tested by studying the adsorption–desorption behaviors at a range of operational temperatures (300–360 K) and pressures (1–100 kPa). Dynamic adsorption breakthrough tests were conducted and the stability and regeneration ability of the MOFs were established after eight consecutive cycles. In order to establish the engineering key parameters, the experimental data were fitted to four isotherm models (Langmuir, Freundlich, Sips and Toth) in addition to the estimation of the thermodynamic properties such as the isosteric heats of adsorption. The selectivity of the separation was tested by applying ideal adsorbed solution theory (IAST). The results revealed that SIFSIX-3-Ni is an effective adsorbent for the separation of 10/90 v/v C3H4/C3H6 under the range of experimental conditions used in this study. The maximum adsorption reported for the same combination was 3.2 mmolg−1. Breakthrough curves confirmed the suitability of this material for the separation with a 10-min gab before the lighter C3H4 is eluted from the column. The separated C3H6 was obtained with a 99.98% purity.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 63
Author(s):  
Maria Harja ◽  
Gabriela Buema ◽  
Nicoleta Lupu ◽  
Horia Chiriac ◽  
Dumitru Daniel Herea ◽  
...  

Fly ash/magnetite material was used for the adsorption of copper ions from synthetic wastewater. The obtained material was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET) surface area, and vibrating sample magnetometer (VSM). Batch adsorption experiments were employed in order to investigate the effects of adsorbent dose, initial Cu (II) concentration and contact time over adsorption efficiency. The experimental isotherms were modeled using Langmuir (four types of its linearization), Freundlich, Temkin, and Harkins–Jura isotherm models. The fits of the results are estimated according to the Langmuir isotherm, with a maximum adsorption capacity of 17.39 mg/g. The pseudo-second-order model was able to describe kinetic results. The data obtained throughout the study prove that this novel material represents a potential low-cost adsorbent for copper adsorption with improved adsorption capacity and magnetic separation capability compared with raw fly ash.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Klaiani B. Fontana ◽  
Giane Gonçalves Lenzi ◽  
Erica R. L. R. Watanabe ◽  
Ervin Kaminski Lenzi ◽  
Juliana A. M. T. Pietrobelli ◽  
...  

The removal of Pb(II) from water by biosorption processes onto malt bagasse was investigated and the kinetic and thermodynamic parameters were obtained; additionally a diffusion modeling was proposed. The characterization of malt bagasse was performed by FTIR and SEM/EDS. The experiments were conducted in batch system and an experimental design based response surface methodology was applied for agitation speed and pH optimization. The kinetics of biosorption followed pseudo-second-order model and the temperature of the process affected the biosorption capacity. Isotherm models of Langmuir, Freundlich, and Elovich were applied and the Langmuir model showed better fit and the estimated biosorption capacity was 29.1 mg g−1. The negative values obtained for ΔG° and positive values of ΔH° confirm, respectively, the spontaneous and endothermic nature of the process. The diffusion modeling was performed based on experiments in the absence of agitation to investigate the influence of the biosorbent on the sorption process of Pb(II) ions.


Author(s):  
Eman Hashim Khader ◽  
Thamer Jassim Mohammed ◽  
Nourollah Mirghaffari ◽  
Ali Dawood Salman ◽  
Tatjána Juzsakova ◽  
...  

AbstractThis paper studied the adsorption of chemical oxygen demand (COD), oil and turbidity of the produced water (PW) which accompanies the production and reconnaissance of oil after treating utilizing powdered activated carbon (PAC), clinoptilolite natural zeolite (CNZ) and synthetic zeolite type X (XSZ). Moreover, the paper deals with the comparison of pollutant removal over different adsorbents. Adsorption was executed in a batch adsorption system. The effects of adsorbent dosage, time, pH, oil concentration and temperature were studied in order to find the best operating conditions. The adsorption isotherm models of Langmuir, Freundlich and Temkin were investigated. Using pseudo-first-order and pseudo-second-order kinetic models, the kinetics of oil sorption and the shift in COD content on PAC and CNZ were investigated. At a PAC adsorbent dose of 0.25 g/100 mL, maximum oil removal efficiencies (99.57, 95.87 and 99.84 percent), COD and total petroleum hydrocarbon (TPH) were identified. Moreover, when zeolite X was used at a concentration of 0.25 g/100 mL, the highest turbidity removal efficiency (99.97%) was achieved. It is not dissimilar to what you would get with PAC (99.65 percent). In comparison with zeolites, the findings showed that adsorption over PAC is the most powerful method for removing organic contaminants from PW. In addition, recycling of the consumed adsorbents was carried out in this study to see whether the adsorbents could be reused. Chemical and thermal treatment will effectively regenerate and reuse powdered activated carbon and zeolites that have been eaten. Graphic abstract


2019 ◽  
Vol 32 (1) ◽  
pp. 73-78
Author(s):  
P. Janaki ◽  
R. Sudha ◽  
T.S. Sribharathi ◽  
P. Anitha ◽  
K. Poornima ◽  
...  

The adsorption performance of sulphuric acid treated low cost adsorbent synthesized by using Citrus limettioides peel as an effective raw material for the removal of cadmium(II) from water. The batch adsorption method was carried out to optimize some parameters like contact time, pH and adsorbent dose. The nonlinear isotherm equations were used to calculate the different isotherm constant of five isotherm models namely Freundlich, Langmuir, Dubinin-Radushkevich, Redlich-Peterson and Sips. The Langmuir monolayer adsorption capacity of chemically modified Citrus limettioides peel was found to be 287.60 mg g-1. The negative values of ΔGº and ΔHº showed that the adsorption process is spontaneous and exothermic.


Sign in / Sign up

Export Citation Format

Share Document