scholarly journals Epigenetic mechanisms in cartilage and osteoarthritis: DNA methylation, histone modifications and microRNAs

2012 ◽  
Vol 20 (5) ◽  
pp. 339-349 ◽  
Author(s):  
M.J. Barter ◽  
C. Bui ◽  
D.A. Young
2011 ◽  
Vol 2 (6) ◽  
pp. 459-467 ◽  
Author(s):  
Thomas Vaissière ◽  
Courtney A. Miller

AbstractEpigenetic mechanisms have emerged as a central process in learning and memory. Histone modifications and DNA methy­lation are epigenetic events that can mediate gene transcription. Interesting features of these epigenetic changes are their transient and long lasting potential. Recent advances in neuroscience suggest that DNA methylation is both dynamic and stable, mediating the formation and maintenance of memory. In this review, we will further illustrate the recent hypothesis that DNA methylation participates in the transcriptional regulation necessary for memory.


2021 ◽  
Vol 22 (20) ◽  
pp. 10969
Author(s):  
Daniel Desaulniers ◽  
Paule Vasseur ◽  
Abigail Jacobs ◽  
M. Cecilia Aguila ◽  
Norman Ertych ◽  
...  

Epigenetics involves a series of mechanisms that entail histone and DNA covalent modifications and non-coding RNAs, and that collectively contribute to programing cell functions and differentiation. Epigenetic anomalies and DNA mutations are co-drivers of cellular dysfunctions, including carcinogenesis. Alterations of the epigenetic system occur in cancers whether the initial carcinogenic events are from genotoxic (GTxC) or non-genotoxic (NGTxC) carcinogens. NGTxC are not inherently DNA reactive, they do not have a unifying mode of action and as yet there are no regulatory test guidelines addressing mechanisms of NGTxC. To fil this gap, the Test Guideline Programme of the Organisation for Economic Cooperation and Development is developing a framework for an integrated approach for the testing and assessment (IATA) of NGTxC and is considering assays that address key events of cancer hallmarks. Here, with the intent of better understanding the applicability of epigenetic assays in chemical carcinogenicity assessment, we focus on DNA methylation and histone modifications and review: (1) epigenetic mechanisms contributing to carcinogenesis, (2) epigenetic mechanisms altered following exposure to arsenic, nickel, or phenobarbital in order to identify common carcinogen-specific mechanisms, (3) characteristics of a series of epigenetic assay types, and (4) epigenetic assay validation needs in the context of chemical hazard assessment. As a key component of numerous NGTxC mechanisms of action, epigenetic assays included in IATA assay combinations can contribute to improved chemical carcinogen identification for the better protection of public health.


2012 ◽  
Vol 10 (3) ◽  
pp. 59-76
Author(s):  
Lilia R Kutlyeva ◽  
Irina R Gilayzova ◽  
Rita I Khusainova ◽  
Elsa K Khusnutdinova

Epigenetic mechanisms of gene regulation play a key role in carcinogenesis. This review will focus on the recent advances of epigenetic investigations in the development of human cancer. The role of histone modifications, genomic imprinting and DNA methylation in renal cell carcinoma development and progression will be considered.


Proceedings ◽  
2019 ◽  
Vol 40 (1) ◽  
pp. 41
Author(s):  
Demokan

The natural products obtained from plants, bacteria, fungi and marine have been used in the treatment of human diseases throughout the centuries. These compounds of them also interfere with the expression of genes by influencing epigenetic mechanisms. Recent researches showed significant outcomes suggesting that epigenetic silencing of the main regulatory genesis a sign of cancer onset and its progression. Epigenetic mechanisms that regulate expression of genes without mutation in the DNA are carried through DNA methylation, histone modification, chromatin remodeling and RNA interference. DNA methylation observed in the promoter regions of genes and prevents binding of the transcription factors by suppressing gene expression or by altering the nucleosome package of DNA, and may also directly inhibit transcription. Plant based products, such as curcumin, flavonoids, genistein, have been shown to exhibit cytostatic and apoptotic activities by influencing DNA methylation-based gene expression regulation in tumor cells. Additionally, natural products such as sulforaphane, retinoic acid, cucurbitacin B, casein Q, parthenolide, folate, cobalamin, pyridoxine and methionine also are used as anti-cancer agents based on DNA methylation. On the other hand, microRNAs (miRNAs) play a particular role in the epigenetic regulation of gene expression in post-transcription and post-translation processes. Quercetin, tryptolide, and honokiol are the natural compounds used in miRNA based agents. Histone modifications, which also affect the chromatin structure, play an important role in the initiation and progression of carcinogenesis as well as regulation of gene expression. As expected particular inhibitors of histone acetyltransferases (HATs) and histone deacetylase (HDAC) enzymes which are responsible of histone modifications have been developed for epigenetic intervention in cancer treatment. Numerous natural compounds are known to affect histone-modifying enzymes; such as romidepsin, epigallocatechingallate (EGCG), daidzein, sulphorafane, glucoraphanin, parthenolide, triptolide, sinapinic acid. Natural epigenetic modulators developed for epigenetic mechanisms enable the destruction of apoptotic, necrotic or autophagic pathways of tumor cells. Beside epigenetic mechanisms, these products exert their effects through influencing the cell cycle, DNA repair, and epigenetic mechanisms which modulate gene expression. More extensive in vitro and in vivo studies are required to investigate the effect of natural product-based epigenetic agents which seems to be very promising for future cancer treatment approaches.


2021 ◽  
Vol 14 (6) ◽  
pp. 491
Author(s):  
Pía Loren ◽  
Nicolás Saavedra ◽  
Kathleen Saavedra ◽  
Tomás Zambrano ◽  
Patricia Moriel ◽  
...  

Cisplatin is an antineoplastic drug used for the treatment of many solid tumors. Among its various side effects, nephrotoxicity is the most detrimental. In recent years, epigenetic regulation has emerged as a modulatory mechanism of cisplatin-induced nephrotoxicity, involving non-coding RNAs, DNA methylation and histone modifications. These epigenetic marks alter different signaling pathways leading to damage and cell death. In this review, we describe how different epigenetic modifications alter different pathways leading to cell death by apoptosis, autophagy, necroptosis, among others. The study of epigenetic regulation is still under development, and much research remains to fully determine the epigenetic mechanisms underlying cell death, which will allow leading new strategies for the diagnosis and therapy of this disease.


2016 ◽  
Vol 242 (2) ◽  
pp. 140-147 ◽  
Author(s):  
Suet-Hui Ow ◽  
Pei-Jou Chua ◽  
Boon-Huat Bay

Peroxiredoxin I to VI (PRX I–VI), a family of highly conserved antioxidants, has been implicated in numerous diseases. There have been reports that PRXs are expressed aberrantly in a variety of tumors, implying that they could play an important role in carcinogenesis. Epigenetic mechanisms such as DNA methylation, histone modifications, and microRNAs have been reported to modulate expression of PRXs. In addition, the use of epigenetic regulators, such as histone deacetylases, has been demonstrated to restore PRX to normal levels, indicating that the reversible nature of epigenetics can be exploited for future treatments.


2017 ◽  
Vol 71 (0) ◽  
pp. 0-0
Author(s):  
Bogdan Kolarz ◽  
Maria Majdan

Epigenetics is a field of science which describes external and environmental modifications to DNA without altering their primary sequences of nucleotides. Contrary to genetic changes, epigenetic modifications are reversible. The epigenetic changes appear as a result of the influence of external factors, such as diet or stress. Epigenetic mechanisms alter the accessibility of DNA by methylation of DNA or post-translational modifications of histones (acetylation, methylation, phosphorylation, ubiquitinqation). The extent of DNA methylation depends on the balance between DNA methyltransferases and demethylases. The main histone modifications are stimulated by K-acetyltransferases, histone deacetylases, K-metyltransferases and K-demethylases. There is proof that environmental modifications of this enzymes regulate immunological processes including autoimmunity in rheumatoid arthritis (RA). In this work we present epigenetic mechanisms involved in RA pathogenesis and a range of research presenting the possible impact of its modification in RA patients.


2019 ◽  
Vol 20 (7) ◽  
pp. 727-735 ◽  
Author(s):  
Yi Wu ◽  
Zhibin Cheng ◽  
Yueyu Bai ◽  
Xi Ma

Nutrients can regulate metabolic activities of living organisms through epigenetic mechanisms, including DNA methylation, histone modification, and RNA regulation. Since the nutrients required for early embryos and postpartum lactation are derived in whole or in part from maternal and lactating nutrition, the maternal nutritional level affects the growth and development of fetus and creates a profound relationship between disease development and early environmental exposure in the offspring’s later life. Protein is one of the most important biological macromolecules, involved in almost every process of life, such as information transmission, energy processing and material metabolism. Maternal protein intake levels may affect the integrity of the fetal genome and alter DNA methylation and gene expression. Most amino acids are supplied to the fetus from the maternal circulation through active transport of placenta. Some amino acids, such as methionine, as dietary methyl donor, play an important role in DNA methylation and body’s one-carbon metabolism. The purpose of this review is to describe effects of maternal dietary protein and amino acid intake on fetal and neonatal growth and development through epigenetic mechanisms, with examples in humans and animals.


Sign in / Sign up

Export Citation Format

Share Document