The role of gut hormones in the regulation of body weight and energy homeostasis

2010 ◽  
Vol 316 (2) ◽  
pp. 120-128 ◽  
Author(s):  
Efthimia Karra ◽  
Rachel L. Batterham
2021 ◽  
Author(s):  
Gabriel Henrique Marques Gonçalves ◽  
Sabrina Mara Tristão ◽  
Rafaella Eduarda Volpi ◽  
Gislaine Almeida-Pereira ◽  
Beatriz de Carvalho Borges ◽  
...  

Leptin plays an important role in the protection against diet-induced obesity (DIO) by its actions in ventromedial hypothalamic (VMH) neurons. However, little is known about the intracellular mechanisms involved in these effects. To assess the role of the STAT3 and ERK2 signaling in neurons that express the steroidogenic factor 1 (SF1) in the VMH on energy homeostasis, we used cre-lox technology to generate male and female mice with specific disruption of STAT3 or ERK2 in SF1 neurons of the VMH. We demonstrated that the conditional knockout of STAT3 in SF1 neurons of the VMH did not affect body weight, food intake, energy expenditure and glucose homeostasis in animals on regular chow. However, when challenged with high-fat diet (HFD), loss of STAT3 in SF1 neurons caused a significant increase in body weight, food intake and energy efficiency that was more remarkable in females which also showed a decrease in energy expenditure. In contrast, deletion of ERK2 in SF1 neurons of VMH did not have any impact on energy homeostasis in both regular diet and HFD conditions. In conclusion, STAT3 but not ERK2 signaling in SF1 neurons of VMH plays a crucial role to protect against DIO in a sex-specific pattern.


2020 ◽  
Vol 26 ◽  
Author(s):  
Tapan Behl ◽  
Priya Nijhawan ◽  
Monika Sachdeva ◽  
Arun Kumar ◽  
Md. Sahab Uddin ◽  
...  

Background:: Obesity, metabolic disorders and diabetes mellitus are allied with increased cardiovascular risk. Given the vasoconstrictor activity of endothelin, enhanced endothelin has been hypothesized to take part in the disorder of adiposity associated vascular homeostasis. Moreover, elevated endothelin subsidizes endothelin dysregulated related to obesity, diabetes mellitus whereas alleviating the endothelin vasoconstrictor tone amends the unreliable endothelium - dependent vasodilation. Objective: The main objective of the current manuscript is to enumerate the intrinsic role of endothelin in obesity and related complications. Methods: A deep research on the literature available till date for endothelin in obesity as conducted using various medical sites like PubMed, MEDLINE from internet and data was collected. The articles were majorly preferred in English language. Results: The substantial effect of obesity on the progression of cardiac disorders has generated persistent efforts to expose the action associating with excessive adiposity to vascular dysregulation. Reduced vasodilator activity has been predicted as an early hemodynamic defect in obese individuals, also elevated vasoconstrictor tone elicits to vascular impairment. In certain, upregulation of endothelin activity, constantly reported in obese subjects, hasten obesity and its related complication, specifying the inflammatory and mitogenic activities of endothelin. Recently, various gut hormones, in association with their role as an accent of food intake, energy homeostasis, and triglycerides metabolism have reported numerous vascular properties. They escalate the bioavailability of vasodilators mediator i.e. nitric oxide and prevent the endothelin activity. These characteristics make gut hormones a favorable approach for targeting both metabolic and cardiovascular conditions of obesity. Conclusion: The present review demonstrates the intrinsic role of endothelin as a novel molecule in the progression of obesity and focuses on the status of endothelin inhibitors as a therapeutic potential in preventing obesity and related complications.


2003 ◽  
Vol 284 (3) ◽  
pp. E583-E588 ◽  
Author(s):  
Akira Gomori ◽  
Akane Ishihara ◽  
Masahiko Ito ◽  
Satoshi Mashiko ◽  
Hiroko Matsushita ◽  
...  

Melanin-concentrating hormone (MCH) is a cyclic amino acid neuropeptide localized in the lateral hypothalamus. Although MCH is thought to be an important regulator of feeding behavior, the involvement of this peptide in body weight control has been unclear. To examine the role of MCH in the development of obesity, we assessed the effect of chronic intracerebroventricular infusion of MCH in C57BL/6J mice that were fed with regular or moderately high-fat (MHF) diets. Intracerebroventricular infusion of MCH (10 μg/day for 14 days) caused a slight but significant increase in body weight in mice maintained on the regular diet. In the MHF diet-fed mice, MCH more clearly increased the body weight accompanied by a sustained hyperphagia and significant increase in fat and liver weights. Plasma glucose, insulin, and leptin levels were also increased in the MCH-treated mice fed the MHF diet. These results suggest that chronic stimulation of the brain MCH system causes obesity in mice and imply that MCH may have a major role in energy homeostasis.


2012 ◽  
Vol 108 (5) ◽  
pp. 778-793 ◽  
Author(s):  
F. A. Duca ◽  
M. Covasa

The gastrointestinal peptides are classically known as short-term signals, primarily inducing satiation and/or satiety. However, accumulating evidence has broadened this view, and their role in long-term energy homeostasis and the development of obesity has been increasingly recognised. In the present review, the recent research involving the role of satiation signals, especially ghrelin, cholecystokinin, glucagon-like peptide 1 and peptide YY, in the development and treatment of obesity will be discussed. Their activity, interactions and release profile vary constantly with changes in dietary and energy influences, intestinal luminal environment, body weight and metabolic status. Manipulation of gut peptides and nutrient sensors in the oral and postoral compartments through diet and/or changes in gut microflora or using multi-hormone ‘cocktail’ therapy are among promising approaches aimed at reducing excess food consumption and body-weight gain.


2008 ◽  
pp. S49-S55
Author(s):  
H Zamrazilová ◽  
V Hainer ◽  
D Sedlačková ◽  
H Papežová ◽  
M Kunešová ◽  
...  

Obestatin is a recently discovered peptide produced in the stomach, which was originally described to suppress food intake and decrease body weight in experimental animals. We investigated fasting plasma obestatin levels in normal weight, obese and anorectic women and associations of plasma obestatin levels with anthropometric and hormonal parameters. Hormonal (obestatin, ghrelin, leptin, insulin) and anthropometric parameters and body composition were examined in 15 normal weight, 21 obese and 15 anorectic women. Fasting obestatin levels were significantly lower in obese than in normal weight and anorectic women, whereas ghrelin to obestatin ratio was increased in anorectic women. Compared to leptin, only minor differences in plasma obestatin levels were observed in women who greatly differed in the amount of fat stores. However, a negative correlation of fasting obestatin level with body fat indexes might suggest a certain role of obestatin in the regulation of energy homeostasis. A significant relationship between plasma obestatin and ghrelin levels, independent of anthropometric parameters, supports simultaneous secretion of both hormones from the common precursor. Lower plasma obestatin levels in obese women compared to normal weight and anorectic women as well as increased ghrelin to obestatin ratio in anorectic women might play a role in body weight regulation in these pathologies.


Endocrinology ◽  
2012 ◽  
Vol 153 (4) ◽  
pp. 1817-1826 ◽  
Author(s):  
Wenying Quan ◽  
Hyun-Kyong Kim ◽  
Eun-Yi Moon ◽  
Su Sung Kim ◽  
Cheol Soo Choi ◽  
...  

Autophagy is a catabolic cellular process involving the degradation of the cell's own components. Although the role of autophagy of diverse tissues in body metabolism has been investigated, the importance of autophagy in hypothalamic proopiomelanocortin (POMC) neurons, key regulators of energy balance, has not been addressed. The role of autophagy in leptin sensitivity that is critical for the control of body weight and appetite has also not been investigated. We produced mice with specific deletion of autophagy-related 7 (Atg7), an essential autophagy gene, in hypothalamic POMC neurons (Atg7ΔPOMC mice). Atg7 expression was deficient in the arcuate nucleus of the hypothalamus of Atg7ΔPOMC mice. p62, a specific substrate of autophagy, accumulated in the hypothalamus of Atg7ΔPOMC mice, which colocalized with ubiquitin. Atg7ΔPOMC mice had increased body weight due to increased food intake and decreased energy expenditure. Atg7ΔPOMC mice were not more prone to diet-induced obesity compared with control mice but more susceptible to hyperglycemia after high-fat diet. The ability of leptin to suppress fasting-elicited hyperphagia and weight gain during refeeding was attenuated in Atg7ΔPOMC mice. Deficient autophagy did not significantly affect POMC neuron number but impaired leptin-induced signal transducer and activation of transcription 3 activation. Our findings indicate a critical role for autophagy of POMC neurons in the control of energy homeostasis and leptin signaling.


2021 ◽  
Author(s):  
◽  
Roshan Kumari ◽  

Introduction: Obesity and its associated metabolic syndrome are major medical problems worldwide including United States. Adipose tissue is the primary site of energy storage, playing important roles in health. Adipose tissue also has other critical functions, producing adipocytokines and contributing to normal nutrient metabolism, which in turn play important roles in satiety, inflammation, and total energy homeostasis. Activin A and activin B play important roles in maintaining body composition and energy homeostasis. This dissertation highlights the role of activin/SMADs signaling in adipose tissue development, function, and maintenance. SMAD2/3 proteins are downstream mediators of transforming growth factor-β (TGFβ) family signaling, including activins, which regulate critical preadipocyte and mature adipocyte functions. Previous studies have demonstrated that Smad2 global knockout mice exhibit embryonic lethality, whereas global loss of Smad3 protects mice against diet-induced obesity and the direct contributions of Smad2 and Smad3 in adipose tissues individually or in combination and the responses of these tissues to activin signaling are unknown. Additionally, our lab demonstrated that the combined loss of activin A and activin B have reduced adiposity in mice and appearance of brown-like cells in visceral white adipose tissue. However, the cell-autonomous role of activins on cell proliferation and differentiation remained unknown in vitro. My hypothesis was that activin signaling regulate adipocyte differentiation and functions via SMAD2/3-mediated mechanism(s) and that the individual or combined adipose-specific deletion of SMAD2/SMAD3 would result in reduced adiposity similar to activin deficient mice. Objective: Here, we sought to determine the primary effects of adipocyte-selective reduction of Smad2 or Smad3 individually and in combination, on diet-induced adiposity and to establish whether preadipocytes isolated from subcutaneous and visceral white adipose tissues differ in their differentiation capacity. We also assessed the role of activins on cell proliferation and differentiation using an in vitro model. Research Design: To assess the adipose-selective requirements of Smad2, Smad3 and Smad2/3, we generated three lines of adipose-selective conditional knockout (cKO) mice including Smad2cKO, Smad3cKO, and Smad2/3 double cKO mice using Smad2 and/or Smad3 “floxed” mice intercrossed with Adiponectin-Cre mice. Additionally, we isolated preadipocytes and examined adipogenic activity of visceral and subcutaneous preadipocyte and the effects of activin on preadipocyte proliferation and differentiation in vitro. Furthermore, we used mouse embryonic fibroblasts (MEFs) from wild type mice and activin double knockout mice to study the cell autonomous role of activin on differentiation and cell fate. Results: Our results demonstrated that subcutaneous preadipocytes differentiate uniformly and almost all wildtype subcutaneous preadipocytes differentiated into mature adipocytes. In contrast, visceral preadipocytes differentiated poorly. Exogenous activin A promoted proliferation and suppressed differentiation of subcutaneous preadipocytes more robustly given that visceral adipocytes differentiate poorly at baseline. Additionally, global knockout of activin A and B promoted differentiation and browning in differentiated MEFs in vitro consistent with in vivo studies. Furthermore, we showed that Smad2cKO mice did not exhibit significant effects on weight gain, irrespective of diet, whereas Smad3cKO male mice displayed a trend of reduced body weight on high fat diet. On both (LFD and HFD) diets, Smad3cKO male mice displayed an adipose depot-selective phenotype, with significant reduction in subcutaneous fat mass but not visceral fat mass. Smad2/3cKO male mice did not show any difference in body weight or fat mass compared to control mice. Female mice with adipose-selective combined deletion of Smad2/3, displayed reduced body weight and reduction of fat mass in both visceral and subcutaneous depot with higher metabolic rate on HFD compared to control littermates. Conclusions: Our study demonstrated that Smad3 is an important contributor to the development and/or maintenance of subcutaneous white adipose tissue in a sex-selective fashion. Combined reduction of Smad2/3 protects female mice from diet induced obesity and is important for visceral and subcutaneous depots in a sex-selective fashion. These findings have implications for understanding SMAD-mediated, depot selective regulation of adipocyte growth and differentiation. Activin treatment promoted proliferation of preadipocytes, while activin deficiency promoted differentiation and altered the phenotypic characteristics of White adipocytes to brown-like cells in vitro consistent with in vivo.


Author(s):  
Yongjie Yang ◽  
Yong Xu

Abstract The prevalence of obesity and the associated comorbidities highlight the importance of understanding the regulation of energy homeostasis. The central melanocortin system plays a critical role in controlling body weight balance. Melanocortin neurons sense and integrate the neuronal and hormonal signals, and then send regulatory projections, releasing anorexigenic or orexigenic melanocortin neuropeptides, to downstream neurons to regulate the food intake and energy expenditure. This review summarizes the latest progress in our understanding of the role of the melanocortin pathway in energy homeostasis. We also review the advances in the identification of human genetic variants that cause obesity via mechanisms that affect the central melanocortin system, which have provided rational targets for treatment of genetically susceptible patients.


2020 ◽  
Vol 79 (3) ◽  
pp. 357-366
Author(s):  
Helen Truby ◽  
Christie Bennett ◽  
Catia Martins

This review seeks to synthesise our knowledge about changes in hunger and satiety that occur during diet-induced weight loss and during weight loss maintenance, with a particular focus on youth with obesity. Mechanisms of appetite responses to weight loss rely heavily on the adult literature. Physiological mechanisms that control appetite and satiety via the gut–brain axis have been elucidated but we have an incomplete picture of changes in gut hormones and peptides in youth with obesity. In adolescents, the role of the brain in long-term sensing of body composition and modifying appetite and satiety changes is easily over-ridden by hedonic influences for the reward of highly palatable sweet foods and encourages over-consumption. Accordingly, reward cues and hyper-responsiveness to palatable foods lead to a pattern of food choices. Different reward systems are necessary that are substantial enough to reward the continued individual effort required to sustain new behaviours, that need to be adopted to support a reduced body weight. Periods of growth and development during childhood provide windows of opportunity for interventions to influence body weight trajectory but long-term studies are lacking. More emphasis needs to be placed on anticipatory guidance on how to manage powerful hedonic influences of food choice, essential to cope with living in our obesogenic environment and managing hunger which comes with the stronger desire to eat after weight has been lost.


2012 ◽  
Vol 25 (2) ◽  
pp. 223-248 ◽  
Author(s):  
Andoni Lancha ◽  
Gema Frühbeck ◽  
Javier Gómez-Ambrosi

The alarming prevalence of obesity has led to a better understanding of the molecular mechanisms controlling energy homeostasis. Regulation of energy intake and expenditure is more complex than previously thought, being influenced by signals from many peripheral tissues. In this sense, a wide variety of peripheral signals derived from different organs contributes to the regulation of body weight and energy expenditure. Besides the well-known role of insulin and adipokines, such as leptin and adiponectin, in the regulation of energy homeostasis, signals from other tissues not previously thought to play a role in body weight regulation have emerged in recent years. The role of fibroblast growth factor 21 (FGF21), insulin-like growth factor 1 (IGF-I), and sex hormone-binding globulin (SHBG) produced by the liver in the regulation of body weight and insulin sensitivity has been recently described. Moreover, molecules expressed by skeletal muscle such as myostatin have also been involved in adipose tissue regulation. Better known is the involvement of ghrelin, cholecystokinin, glucagon-like peptide 1 (GLP-1) and PYY3–36, produced by the gut, in energy homeostasis. Even the kidney, through the production of renin, appears to regulate body weight, with mice lacking this hormone exhibiting resistance to diet-induced obesity. In addition, the skeleton has recently emerged as an endocrine organ, with effects on body weight control and glucose homeostasis through the actions of bone-derived factors such as osteocalcin and osteopontin. The comprehension of these signals will help in a better understanding of the aetiopathology of obesity, contributing to the potential development of new therapeutic targets aimed at tackling excess body fat accumulation.


Sign in / Sign up

Export Citation Format

Share Document