scholarly journals Citrobacter rodentium(ϕStx2dact), a murine infection model for enterohemorrhagic Escherichia coli

2022 ◽  
Vol 65 ◽  
pp. 183-190
Author(s):  
Cheleste M Thorpe ◽  
Amanda R Pulsifer ◽  
Marcia S Osburne ◽  
Sivapriya Kailasan Vanaja ◽  
John M Leong
1998 ◽  
Vol 188 (10) ◽  
pp. 1907-1916 ◽  
Author(s):  
Akio Abe ◽  
Ursula Heczko ◽  
Richard G. Hegele ◽  
B. Brett Finlay

Enteropathogenic Escherichia coli (EPEC) belongs to a family of related bacterial pathogens, including enterohemorrhagic Escherichia coli (EHEC) O157:H7 and other human and animal diarrheagenic pathogens that form attaching and effacing (A/E) lesions on host epithelial surfaces. Bacterial secreted Esp proteins and a type III secretion system are conserved among these pathogens and trigger host cell signal transduction pathways and cytoskeletal rearrangements, and mediate intimate bacterial adherence to epithelial cell surfaces in vitro. However, their role in pathogenesis is still unclear. To investigate the role of Esp proteins in disease, mutations in espA and espB were constructed in rabbit EPEC serotype O103 and infection characteristics were compared to that of the wild-type strain using histology, scanning and transmission electron microscopy, and confocal laser scanning microscopy in a weaned rabbit infection model. The virulence of EspA and EspB mutant strains was severely attenuated. Additionally, neither mutant strain formed A/E lesions, nor did either one cause cytoskeletal actin rearrangements beneath the attached bacteria in the rabbit intestine. Collectively, this study shows for the first time that the type III secreted proteins EspA and EspB are needed to form A/E lesions in vivo and are indeed virulence factors. It also confirms the role of A/E lesions in disease processes.


1998 ◽  
Vol 72 (12) ◽  
pp. 1300-1305 ◽  
Author(s):  
Takahiro TACHIKAWA ◽  
Genichiro SEO ◽  
Muneo NAKAZAWA ◽  
Masuo SUEYOSHI ◽  
Tsutomu OHISHI ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3148
Author(s):  
Yanbei Wu ◽  
Jing Wang ◽  
Qiang He ◽  
Liangli Yu ◽  
Quynhchi Pham ◽  
...  

Enteropathogenic and enterohemorrhagic Escherichia coli are important enteric pathogens that induce hemorrhagic colitis or even fatal hemolytic uremic syndrome. Emerging evidence shows that some bio-actives derived from fruits and vegetables may serve as alternatives to antibiotics for overcoming multidrug resistant E. coli infections. In this study, the Citrobacter rodentium (Cr) infection model was utilized to mimic E. coli-induced acute intestinal inflammation, and the effects of a cruciferous vegetable-derived cancer protective compound, indole-3-carbinol (I3C), on the immune responses of Cr-susceptible C3H/HeN mice were investigated. Dietary I3C significantly inhibited the loss of body weight and the increase in spleen size in Cr infected mice. In addition, I3C treatment reduced the inflammatory response to Cr infection by maintaining anti-inflammatory cytokine IL-22 mRNA levels while reducing expression of other pro-inflammatory cytokines including IL17A, IL6, IL1β, TNF-α, and IFN-γ. Moreover, the serum cytokine levels of IL17, TNF-α, IL12p70, and G-CSF also were down-regulated by I3C in Cr-infected mice. Additionally, dietary I3C specifically enhanced the Cr-specific IgG response to Cr infection. In general, dietary I3C reduced the Cr-induced pro-inflammatory response in susceptible C3H/HeN mice and alleviated the physiological changes and tissue damage induced by Cr infection but not Cr colonization.


2014 ◽  
Vol 80 (23) ◽  
pp. 7337-7347 ◽  
Author(s):  
Donna M. Easton ◽  
Luke P. Allsopp ◽  
Minh-Duy Phan ◽  
Danilo Gomes Moriel ◽  
Guan Kai Goh ◽  
...  

ABSTRACTEnterohemorrhagicEscherichia coli(EHEC) is a Shiga-toxigenic pathogen capable of inducing severe forms of enteritis (e.g., hemorrhagic colitis) and extraintestinal sequelae (e.g., hemolytic-uremic syndrome). The molecular basis of colonization of human and animal hosts by EHEC is not yet completely understood, and an improved understanding of EHEC mucosal adherence may lead to the development of interventions that could disrupt host colonization. FdeC, also referred to by its IHE3034 locus tag ECOK1_0290, is an intimin-like protein that was recently shown to contribute to kidney colonization in a mouse urinary tract infection model. The expression of FdeC is tightly regulatedin vitro, and FdeC shows promise as a vaccine candidate against extraintestinalE. colistrains. In this study, we characterized the prevalence, regulation, and function offdeCin EHEC. We showed that thefdeCgene is conserved in both O157 and non-O157 EHEC and encodes a protein that is expressed at the cell surface and promotes biofilm formation under continuous-flow conditions in a recombinantE. colistrain background. We also identified culture conditions under which FdeC is expressed and showed that minor alterations of these conditions, such as changes in temperature, can significantly alter the level of FdeC expression. Additionally, we demonstrated that the transcription of thefdeCgene is repressed by the global regulator H-NS. Taken together, our data suggest a role for FdeC in EHEC when it grows at temperatures above 37°C, a condition relevant to its specialized niche at the rectoanal junctions of cattle.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chunhui Miao ◽  
Mingyu Yu ◽  
Geng Pei ◽  
Zhenyi Ma ◽  
Lisong Zhang ◽  
...  

AbstractHost cells use several anti-bacterial pathways to defend against pathogens. Here, using a uropathogenic Escherichia coli (UPEC) infection model, we demonstrate that bacterial infection upregulates RhoB, which subsequently promotes intracellular bacteria clearance by inducing LC3 lipidation and autophagosome formation. RhoB binds with Beclin 1 through its residues at 118 to 140 and the Beclin 1 CCD domain, with RhoB Arg133 being the key binding residue. Binding of RhoB to Beclin 1 enhances the Hsp90-Beclin 1 interaction, preventing Beclin 1 degradation. RhoB also directly interacts with Hsp90, maintaining RhoB levels. UPEC infections increase RhoB, Beclin 1 and LC3 levels in bladder epithelium in vivo, whereas Beclin 1 and LC3 levels as well as UPEC clearance are substantially reduced in RhoB+/− and RhoB−/− mice upon infection. We conclude that when stimulated by UPEC infections, host cells promote UPEC clearance through the RhoB-Beclin 1-HSP90 complex, indicating RhoB may be a useful target when developing UPEC treatment strategies.


2021 ◽  
Vol 9 (2) ◽  
pp. 310
Author(s):  
Masayuki Hashimoto ◽  
Yi-Fen Ma ◽  
Sin-Tian Wang ◽  
Chang-Shi Chen ◽  
Ching-Hao Teng

Uropathogenic Escherichia coli (UPEC) is a major bacterial pathogen that causes urinary tract infections (UTIs). The mouse is an available UTI model for studying the pathogenicity; however, Caenorhabditis elegans represents as an alternative surrogate host with the capacity for high-throughput analysis. Then, we established a simple assay for a UPEC infection model with C. elegans for large-scale screening. A total of 133 clinically isolated E. coli strains, which included UTI-associated and fecal isolates, were applied to demonstrate the simple pathogenicity assay. From the screening, several virulence factors (VFs) involved with iron acquisition (chuA, fyuA, and irp2) were significantly associated with high pathogenicity. We then evaluated whether the VFs in UPEC were involved in the pathogenicity. Mutants of E. coli UTI89 with defective iron acquisition systems were applied to a solid killing assay with C. elegans. As a result, the survival rate of C. elegans fed with the mutants significantly increased compared to when fed with the parent strain. The results demonstrated, the simple assay with C. elegans was useful as a UPEC infectious model. To our knowledge, this is the first report of the involvement of iron acquisition in the pathogenicity of UPEC in a C. elegans model.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1896
Author(s):  
Tatsuki Kimizuka ◽  
Natsumi Seki ◽  
Genki Yamaguchi ◽  
Masahiro Akiyama ◽  
Seiichiro Higashi ◽  
...  

Infectious diarrhea is one of the most important health problems worldwide. Although nutritional status influences the clinical manifestation of various enteric pathogen infections, the effect of diet on enteric infectious diseases remains unclear. Using a fatal infectious diarrheal model, we found that an amino acid-based diet (AD) protected susceptible mice infected with the enteric pathogen Citrobacter rodentium. While the mice fed other diets, including a regular diet, were highly susceptible to C. rodentium infection, AD-fed mice had an increased survival rate. An AD did not suppress C. rodentium colonization or intestinal damage; instead, it prevented diarrhea-induced dehydration by increasing water intake. An AD altered the plasma and fecal amino acid levels and changed the gut microbiota composition. Treatment with glutamate, whose level was increased in the plasma and feces of AD-fed mice, promoted water intake and improved the survival of C. rodentium-infected mice. Thus, an AD changes the systemic amino acid balance and protects against lethal infectious diarrhea by maintaining total body water content.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Amit Gaurav ◽  
Varsha Gupta ◽  
Sandeep K. Shrivastava ◽  
Ranjana Pathania

AbstractThe increasing prevalence of antimicrobial resistance has become a global health problem. Acinetobacter baumannii is an important nosocomial pathogen due to its capacity to persist in the hospital environment. It has a high mortality rate and few treatment options. Antibiotic combinations can help to fight multi-drug resistant (MDR) bacterial infections, but they are rarely used in the clinics and mostly unexplored. The interaction between bacteriostatic and bactericidal antibiotics are mostly reported as antagonism based on the results obtained in the susceptible model laboratory strain Escherichia coli. However, in the present study, we report a synergistic interaction between nalidixic acid and tetracycline against clinical multi-drug resistant A. baumannii and E. coli. Here we provide mechanistic insight into this dichotomy. The synergistic combination was studied by checkerboard assay and time-kill curve analysis. We also elucidate the mechanism behind this synergy using several techniques such as fluorescence spectroscopy, flow cytometry, fluorescence microscopy, morphometric analysis, and real-time polymerase chain reaction. Nalidixic acid and tetracycline combination displayed synergy against most of the MDR clinical isolates of A. baumannii and E. coli but not against susceptible isolates. Finally, we demonstrate that this combination is also effective in vivo in an A. baumannii/Caenorhabditis elegans infection model (p < 0.001)


Sign in / Sign up

Export Citation Format

Share Document