scholarly journals Dietary Indole-3-Carbinol Alleviated Spleen Enlargement, Enhanced IgG Response in C3H/HeN Mice Infected with Citrobacter rodentium

Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3148
Author(s):  
Yanbei Wu ◽  
Jing Wang ◽  
Qiang He ◽  
Liangli Yu ◽  
Quynhchi Pham ◽  
...  

Enteropathogenic and enterohemorrhagic Escherichia coli are important enteric pathogens that induce hemorrhagic colitis or even fatal hemolytic uremic syndrome. Emerging evidence shows that some bio-actives derived from fruits and vegetables may serve as alternatives to antibiotics for overcoming multidrug resistant E. coli infections. In this study, the Citrobacter rodentium (Cr) infection model was utilized to mimic E. coli-induced acute intestinal inflammation, and the effects of a cruciferous vegetable-derived cancer protective compound, indole-3-carbinol (I3C), on the immune responses of Cr-susceptible C3H/HeN mice were investigated. Dietary I3C significantly inhibited the loss of body weight and the increase in spleen size in Cr infected mice. In addition, I3C treatment reduced the inflammatory response to Cr infection by maintaining anti-inflammatory cytokine IL-22 mRNA levels while reducing expression of other pro-inflammatory cytokines including IL17A, IL6, IL1β, TNF-α, and IFN-γ. Moreover, the serum cytokine levels of IL17, TNF-α, IL12p70, and G-CSF also were down-regulated by I3C in Cr-infected mice. Additionally, dietary I3C specifically enhanced the Cr-specific IgG response to Cr infection. In general, dietary I3C reduced the Cr-induced pro-inflammatory response in susceptible C3H/HeN mice and alleviated the physiological changes and tissue damage induced by Cr infection but not Cr colonization.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haidy A. Saleh ◽  
Eman Ramdan ◽  
Mohey M. Elmazar ◽  
Hassan M. E. Azzazy ◽  
Anwar Abdelnaser

AbstractDoxorubicin (DOX) chemotherapy is associated with the release of inflammatory cytokines from macrophages. This has been suggested to be, in part, due to DOX-mediated leakage of endotoxins from gut microflora, which activate Toll-like receptor 4 (TLR4) signaling in macrophages, causing severe inflammation. However, the direct function of DOX on macrophages is still unknown. In the present study, we tested the hypothesis that DOX alone is incapable of stimulating inflammatory response in macrophages. Then, we compared the anti-inflammatory effects of curcumin (CUR), resveratrol (RES) and sulforaphane (SFN) against lipopolysaccharide/interferon-gamma (LPS/IFN-γ)-mediated inflammation in the absence or presence of DOX. For this purpose, RAW 264.7 cells were stimulated with LPS/IFN-γ (10 ng/mL/10 U/mL) in the absence or presence of DOX (0.1 µM). Our results showed that DOX alone is incapable of stimulating an inflammatory response in RAW 264.7 macrophages. Furthermore, after 24 h of incubation with LPS/IFN-γ, a significant increase in tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and inducible nitric oxide synthase (iNOS) mRNA levels was observed. Similarly, nitric oxide (NO) production and TNF-α and IL-6 protein levels were significantly upregulated. Moreover, in LPS/IFN-γ-treated macrophages, the microRNAs (miRNAs) miR-146a, miR-155, and miR-21 were significantly overexpressed. Interestingly, upon testing CUR, RES, and SFN against LPS/IFN-γ-mediated inflammation, only SFN was able to significantly reverse the LPS/IFN-γ-mediated induction of iNOS, TNF-α and IL-6 and attenuate miR-146a and miR-155 levels. In conclusion, SFN, at the transcriptional and posttranscriptional levels, exhibits potent immunomodulatory action against LPS/IFN-γ-stimulated macrophages, which may indicate SFN as a potential treatment for DOX-associated inflammation.


2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Yan Chen ◽  
Yan-Jun Wang ◽  
Ying Zhao ◽  
Jin-Cheng Wang

Diabetic nephropathy (DN) is one of the most devastating complications of diabetes mellitus. Carbohydrate response element binding protein (ChREBP) is a basic helix–loop–helix leucine zipper transcription factor that primarily mediates glucose homeostasis in the body. The present study investigated the role of ChREBP in the pathogenesis of DN. The expression of ChREBP was detected in patients with type 2 diabetes mellitus (T2DM), diabetic mice, and mesangial cells. ELISA was used to measure cytokine production in mesangial cells. Flow cytometry analysis was performed to detect the apoptosis of mesangial cells in the presence of high glucose. The expression levels of ChREBP and several cytokines (TNF-α, IL-1β, and IL-6) were up-regulated in T2DM patients. The mRNA and protein levels of ChREBP were also significantly elevated in the kidneys of diabetic mice. Moreover, glucose treatment promoted mRNA levels of TNF-α, IL-1β, and IL-6 in mesangial cells. Glucose stimulation induced significant apoptosis of SV40 MES 13 cells. In addition, transfection with ChREBP siRNA significantly inhibited ChREBP expression. Consequently, the inflammatory responses and apoptosis were inhibited in SV40 MES 13 cells. These results demonstrated that ChREBP could mediate the inflammatory response and apoptosis of mesangial cells, suggesting that ChREBP may be involved in the pathogenesis of DN.


2018 ◽  
Vol 49 (2) ◽  
pp. 610-625 ◽  
Author(s):  
Chun-Yan He ◽  
Li-Peng Jiang ◽  
Cheng-Yue Wang ◽  
Yue Zhang

Background/Aims: The roles of toll-like receptor 4 (TLR4) and nuclear factor-kappa B (NF-κB) in peri-implantitis are unclear. Here, we used a canine model of peri-implantitis to explore the effects of inhibiting NF-κB with pyrrolidine dithiocarbamate (PDTC) on the inflammatory response in ligature-induced peri-implantitis. Methods: After successfully establishing the peri-implantitis model, beagles were randomly assigned to normal, model or PDTC groups. ELISA tests were used to determine the levels of interleukin (IL)-1, IL-6, IL-8 and tumor necrosis factor alpha (TNF-α). Immunohistochemistry was employed to assess the expression of NF-κB p65. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to determine the mRNA levels of TLR4 and NF-κB p65, and western blot analysis was used to measure the protein levels of TLR4 in periodontal tissues from each group. Periodontal ligament fibroblasts (PDLFs) were cultured and subsequently classified into PDLF normal, PDLF model, PDLF LPS, PDLF PDTC, and PDLF LPS + PDTC groups. An immunofluorescence assay was used to measure the expression level of NF-κB p65. The CCK-8 assay and flow cytometry were performed to evaluate cell proliferation and apoptosis. Results: The in vitro results indicated that NF-κB p65 and TLR4 were upregulated in canine periodontal tissues, and PDTC could suppress the expression levels of NF-κB p65 and TLR4. Inflammation could increase TLR4 protein expression in canine periodontal tissue, and PDTC could inhibit the inflammation-induced increase in TLR4 protein expression. These results revealed that PDTC could reverse the LPS-induced increases in the levels of IL-1, IL-6, IL-8 and TNF-α. In vivo, the results demonstrated that PDTC inhibited the LPS-induced NF-κB p65 upregulation, and PDTC could reverse the inhibitory effect of the PDLF model + LPS on the proliferation of periodontal fibroblasts. The results also showed that in the PDLF model, LPS promoted PDLF apoptosis by inducing implant periodontitis in canines, but PDTC inhibited the PDLF apoptosis and relieved implant periodontitis in canines. Conclusion: Based on our results, we concluded that PDTC can inhibit the expression of NF-κB and alleviate the inflammatory response induced by LPS, thereby preventing periodontal inflammation and reducing the development of peri-implantitis.


2020 ◽  
Vol 53 (1) ◽  
Author(s):  
Jintao Gao ◽  
Fangru Chen ◽  
Huanan Fang ◽  
Jing Mi ◽  
Qi Qi ◽  
...  

Abstract Background Psoriasis is a common chronic inflammatory skin disease. Keratinocytes hyperproliferation and excessive inflammatory response contribute to psoriasis pathogenesis. The agents able to attenuate keratinocytes hyperproliferation and excessive inflammatory response are considered to be potentially useful for psoriasis treatment. Daphnetin exhibits broad bioactivities including anti-proliferation and anti-inflammatory. This study aims to evaluate the anti-psoriatic potential of daphnetin in vitro and in vivo, and explore underlying mechanisms. Methods HaCaT keratinocytes was stimulated with the mixture of IL-17A, IL-22, oncostatin M, IL-1α, and TNF-α (M5) to establish psoriatic keratinocyte model in vitro. Cell viability was measured using Cell Counting Kit-8 (CCK-8). Quantitative Real-Time PCR (qRT-PCR) was performed to measure the mRNA levels of hyperproliferative marker gene keratin 6 (KRT6), differentiation marker gene keratin 1 (KRT1) and inflammatory factors IL-1β, IL-6, IL-8, TNF-α, IL-23A and MCP-1. Western blotting was used to detect the protein levels of p65 and p-p65. Indirect immunofluorescence assay (IFA) was carried out to detect p65 nuclear translocation. Imiquimod (IMQ) was used to construct psoriasis-like mouse model. Psoriasis severity (erythema, scaling) was scored based on Psoriasis Area Severity Index (PASI). Hematoxylin and eosin (H&E) staining was performed to examine histological change in skin lesion. The expression of inflammatory factors including IL-6, TNF-α, IL-23A and IL-17A in skin lesion was measured by qRT-PCR. Results Daphnetin attenuated M5-induced hyperproliferation in HaCaT keratinocytes. M5 stimulation significantly upregulated mRNA levels of IL-1β, IL-6, IL-8, TNF-α, IL-23A and MCP-1. However, daphnetin treatment partially attenuated the upregulation of those inflammatory cytokines. Daphnetin was found to be able to inhibit p65 phosphorylation and nuclear translocation in HaCaT keratinocytes. In addition, daphnetin significantly ameliorate the severity of skin lesion (erythema, scaling and epidermal thickness, inflammatory cell infiltration) in IMQ-induced psoriasis-like mouse model. Daphnetin treatment attenuated IMQ-induced upregulation of inflammatory cytokines including IL-6, IL-23A and IL-17A in skin lesion of mice. Conclusions Daphnetin was able to attenuate proliferation and inflammatory response induced by M5 in HaCaT keratinocytes through suppression of NF-κB signaling pathway. Daphnetin could ameliorate the severity of skin lesion and improve inflammation status in IMQ-induced psoriasis-like mouse model. Daphnetin could be an attractive candidate for future development as an anti-psoriatic agent.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hualiang Liang ◽  
Ke Ji ◽  
Xianping Ge ◽  
Bingwen Xi ◽  
Mingchun Ren ◽  
...  

The present study aimed to assess the role of tributyrin (TB) in regulating the growth and health status of juvenile blunt snout bream (Megalobrama amblycephala) through an 8-week feeding experiment. Six groups were fed experimental diets with added TB percentages of 0% (control group), 0.03%, 0.06%, 0.09%, 0.12% and 0.15%. The present results showed that TB supplementation in feed had some positive impacts on FW, WG, FCR and SGR, and the best results were found in the 0.06% TB group (P<0.05). However, TB supplementation in feed had no significant effects on SR, CF, VSI or whole-body composition (P>0.05). TB supplementation in feed increased antioxidant capacity and immunological capacity and attenuated the inflammatory response by increasing the activity of T-SOD, GPx, CAT and the levels of anti-inflammatory cytokines (IL-10 and TGF-β) and decreasing the levels of MDA and anti-inflammatory cytokines (TNF-α) (P<0.05). Furthermore, TB supplementation improved immunity by increasing the levels of immunoglobulins (IgM and IgG), C3 and IFN-γ (P<0.05). Surprisingly, 0.06%-0.12% TB supplementation significantly increased the content of IL-1β (P<0.05). However, TB supplementation in feed had no significant effects on the plasma content of GSH, HSP70, IL-8 and the activity of T-AOC (P>0.05). The possible mechanism was that TB activated PI3K/Akt/Nrf2 and inhibits the NF-κB signaling pathway, further regulating the mRNA levels of key genes with antioxidant capacity and the inflammatory response; for example, it increased the mRNA levels of Nrf2, Cu/Zn-SOD, HO-1, CAT, Akt, PI3K, GPx, IL-10, and TGF-β and decreased the mRNA levels of NF-κB and TNF-α (P<0.05). In addition, 0.06%-0.15% TB supplementation significantly increased the mRNA levels of IL-1β (P<0.05). TB supplementation in feed had no significant effects on the mRNA levels of HSP70, Mn-SOD and IL-8 (P>0.05). Evidence was presented that TB supplementation decreased the mortality rate caused by Aeromonas hydrophila challenge. In pathological examination, TB supplementation prevented hepatic and intestinal damage. Generally, TB supplementation improved the growth performance of juvenile blunt snout bream. Furthermore, TB supplementation activated PI3K/Akt/Nrf2 and inhibited the NF-κB signaling pathway, regulating health status and preventing hepatic and intestinal damage.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Ye Chen ◽  
Chao Zhang ◽  
Chang-xue Xiao ◽  
Xiao-dong Li ◽  
Zhi-li Hu ◽  
...  

Abstract Objective To investigate lncRNAs and their roles in regulating the pulmonary inflammatory response under dexamethasone (Dex) treatment. Methods IL-1β (10 ng/mL) and LPS (1 μg/mL) was used to construct inflammatory cell models with A549 cells; IL-1β performed better against LPS. Different concentrations of Dex were used to attenuate the inflammation induced by IL-1β, and its effect was assessed via RT-PCR to detect inflammatory cytokine-related mRNA levels, including those of IKβ-α, IKKβ, IL-6, IL-8, and TNF-α. Furthermore, ELISA was used to detect the levels of the inflammatory cytokines TNF-α, IL-6, and IL-8. RT-PCR was used to quantify the levels of lncRNAs, including lncMALAT1, lncHotair, lncH19, and lncNeat1. LncH19 was most closely associated with the inflammatory response, which was induced by IL-1β and attenuated by Dex. Among the lncRNAs, the level of lncH19 showed the highest increase following treatment with 1 and 10 μM Dex. Therefore, lncH19 was selected for further functional studies. LncH19 expression was inhibited by shRNA transduced with lentivirus. Cell assays for cell proliferation and apoptosis as well as RT-PCR, western blot, and ELISA for inflammatory genes were conducted to confirm the functions of lncH19. The predicted target miRNAs of lncH19 were hsa-miR-346, hsa-miR-324-3p, hsa-miR-18a-3p, hsa-miR-18b-5p, hsa-miR-146b-3p, hsa-miR-19b-3p, and hsa-miR-19a-3p. Following estimation via RT-PCR, hsa-miR-346, hsa-miR-18a-3p, and hsa-miR-324-3p showed consistent patterns in A549 NC and A549 shlncH19. An miRNA inhibitor was transfected into A549 NC and A549 shlncH19 cells, and the expression levels were determined via RT-PCR. hsa-miR-324-3p was inhibited the most compared with hsa-miR-346 and hsa-miR-18a-3p and was subjected to further functional studies. RT-PCR, ELISA, and western blotting for inflammatory gene detection were conducted to validate the functions of the target hsa-miR-324-3p. Results Treatment with 1 and 10 μM Dex could effectively attenuate the inflammatory response. During this process, lncH19 expression significantly increased (P < 0.05). Therefore, treatment with 1 μM Dex was used for further study. Under IL-1β treatment with or without Dex, lncH19 inhibition led to an increase in cell proliferation; a decrease in cell apoptosis; an increase in the protein levels of inflammatory genes; phosphorylation of P65, ICAM-1, and VCAM-1; and increase inflammatory cytokines. Prediction of the targets of lncH19 and validation via RT-PCR revealed that miR-346, miR-18a-3p, and miR-324-3p negatively correlate with lncH19. Additionally, Dex increased the lncH19 expression but reduced that of the miRNAs. Among the miRNAs, miR-324-3p was the most markedly downregulated miRNA following treatment of miRNA inhibitors. The MTS assay and cell apoptosis assay showed that the miR-324-3p inhibitor inhibited cell proliferation and induced cell apoptosis, thereby significantly attenuating the inflammatory response, which reversed the effect of lncH19 in regulating cell proliferation and the secretion of inflammatory cytokines (P < 0.05). Therefore, lncH19 might regulate miR-324-3p in pulmonary inflammatory response under Dex treatment. Conclusion Dex can attenuate the pulmonary inflammatory response by regulating the lncH19/miR-324-3p cascade.


2020 ◽  
Vol 65 (1) ◽  
pp. e01172-20 ◽  
Author(s):  
Yu-Feng Zhou ◽  
Ping Liu ◽  
Shu-He Dai ◽  
Jian Sun ◽  
Ya-Hong Liu ◽  
...  

ABSTRACTAlternative therapeutic options are urgently needed against multidrug-resistant Escherichia coli infections, especially in situations of preexisting tigecycline and colistin resistance. Here, we investigated synergistic activity of the antiretroviral drug zidovudine in combination with tigecycline or colistin against E. coli harboring tet(X) and mcr-1 in vitro and in a murine thigh infection model. Zidovudine and tigecycline/colistin combinations achieved synergistic killing and significantly decreased bacterial burdens by >2.5-log10 CFU/g in thigh tissues compared to each monotherapy.


Author(s):  
Belén Rivero-Gutiérrez ◽  
María Arredondo-Amador ◽  
Reyes Gámez-Belmonte ◽  
Fermin Sánchez de Medina ◽  
Olga Martínez-Augustin

The role of leptin in the development of intestinal inflammation remains controversial, since proinflammatory and anti-inflammatory effects have been described. This study describes the effect of the absence of leptin signaling in intestinal inflammation. Experimental colitis was induced by intrarectal administration of trinitrobenzene sulfonic acid (TNBS) to lean and obese Zucker rats (n=10). Effects on inflammation and mucosal barrier were studied. Bacterial translocation and LPS concentration were evaluated together with colonic permeability to 4 kDa FITC-dextran. Obese Zucker rats showed a lower intestinal myeloperoxidase and alkaline phosphatase activity, reduced alkaline phosphatase sensitivity to levamisole, and diminished colonic expression of Nos2, Tnf and Il6, indicating attenuated intestinal inflammation, associated with attenuated STAT3, AKT and ERK signaling in the colonic tissue. S100a8 and Cxcl1 mRNA levels were maintained, suggesting that in the absence of leptin signaling neutrophil activation rather than infiltration is hampered. In spite of the lower inflammatory response, leptin resistance enhanced intestinal permeability, reflecting an increased epithelial damage. This was shown by augmented LPS presence in the portal vein of colitic obese Zucker rats, associated with induction of tissue non-specific alkaline phosphatase, LPS-binding protein and CD14 hepatic expression (involved in LPS handling). This was linked to decreased ZO-1 immunoreactivity in tight junctions and lower occludin expression. Our results indicate that obese Zucker rats present an attenuated inflammatory response to TNBS, but increased intestinal epithelial damage allowing the passage of bacterial antigens.


1998 ◽  
Vol 274 (3) ◽  
pp. G472-G479 ◽  
Author(s):  
Maarten A. C. Meijssen ◽  
Steven L. Brandwein ◽  
Hans-Christian Reinecker ◽  
Atul K. Bhan ◽  
Daniel K. Podolsky

Intestinal epithelial cells may be actively involved in the immunoregulatory pathways leading to intestinal inflammation. The aim of this study was to assess expression by intestinal epithelial cells of cytokines with potential involvement in the development of intestinal inflammation in interleukin (IL)-2-deficient [(−/−)] mice. Wild-type mice, mice heterozygous for the disrupted IL-2 gene, and IL-2(−/−) mice were studied at 6, 16, and 24 wk of age. The mRNA levels of transforming growth factor-β1 (TGF-β1), tumor necrosis factor-α (TNF-α), IL-1β, IL-6, IL-15, KC, JE, and CD14 in colonic and small intestinal epithelial cells were assessed by Northern blot analysis. CD14 was also measured by Western blotting and reverse transcriptase polymerase chain reaction (RT-PCR). TGF-β1 mRNA was constitutively expressed in both colonic and small intestinal epithelial cells with increased expression in the colonic epithelium of colitic mice. CD14 was detected only in colonic epithelial cells, and mRNA levels increased severalfold in IL-2(−/−) mice with colitis. Northern analysis demonstrated increased levels of TGF-β1 and CD14 mRNA in colonic epithelial cells of IL-2(−/−) mice before the development of signs of colitis. CD14 mRNA and protein expression in the epithelial cells of colitic mice were confirmed by RT-PCR and Western blot analysis of isolated cells. In addition, IL-2(−/−) mice also expressed increased levels of IL-15 mRNA in small intestinal and colonic epithelial cells compared with heterozygous control mice. TNF-α, IL-1β, IL-6, KC, and JE mRNAs were only detectable in colonic epithelial cells of mice after the onset of colitis. Enhanced expression of TGF-β1, IL-15, and CD14 by colonic epithelial cells may play a role in the subsequent development of colitis in IL-2(−/−) mice.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jie Ren ◽  
Dong Yan ◽  
Yichun Wang ◽  
Jiaojiao Zhang ◽  
Min Li ◽  
...  

The loss of inhibitor of differentiation-2 (ID2) could lead to the development of colitis in mice, supplementation with exogenous ID2 protein might be a potential strategy to ameliorate colitis. In this study, the effects of ID2 protein supplementation on Dextran sodium sulfate (DSS)-induced colitis were investigated. Firstly, we confirmed that the expression of ID2 was reduced in the colon tissues of DSS-induced colitis mice and patients with ulcerative colitis (UC). Then, we constructed a recombinant plasmid containing the human Id2 gene and expressed it in Escherichia coli (E. coli) successfully. After purification and identification, purified hID2 could ameliorate DSS-induced colitis efficiently in mice by improving disease symptoms, decreasing the levels of proinflammatory cytokines in colon tissues, maintaining the integrity of intestinal barrier and reducing the infiltration of neutrophils and macrophages in the colon. Further study showed that hID2 could be endocytosed efficiently by neutrophils and macrophages, and hID2 lost its protection function against colitis when neutrophils were depleted with an anti-Gr-1 antibody. hID2 decreased the mRNA levels of IL-6, IL-1β and TNF-α in lipopolysaccharides (LPS)-stimulated neutrophils and efficiently inhibited the activation of NF-κB signalling pathway in neutrophils. Interestingly, hID2 showed a synergistic role in inhibition of NF-κB activation with pyrrolidine dithiocarbamic acid (PDTC), an inhibitor of NF-κB activation. Therefore, this study demonstrated the potential use of hID2 to treat UC, and hID2 protein might be a promising anti-inflammatory agent that targets the NF-κB signalling pathway in neutrophils.


Sign in / Sign up

Export Citation Format

Share Document