The effect of TLP bonding temperature on microstructural and mechanical property of joints made using FSX-414 superalloy

2012 ◽  
Vol 546 ◽  
pp. 291-300 ◽  
Author(s):  
R. Bakhtiari ◽  
A. Ekrami ◽  
T.I. Khan
2010 ◽  
Vol 442 ◽  
pp. 66-73 ◽  
Author(s):  
A. Javadzadeh ◽  
T.I. Khan

The oil and gas industry of Alberta, Canada use coiled tubing made from high strength low alloyed steel (HSLA) to extract oil from reservoirs deep beneath the earth’s surface. The repeated use of the coiled tubing in down-hole wells results in fatigue failure of the tube material. In order to repair the coiled tube, a section of tubing is fusion welded using tungsten inert gas welding onto the remaining tube steel. However, the fusion weld often fails within the weld region and therefore, alternative joining methods need to be explored to minimize detrimental changes at the joint region. In this study transient liquid phase (TLP) bonding is used with the aid of metal interlayers based on the Ag-Cu and Ni-P systems. These interlayers form a liquid at the melting point and the gradual diffusion of alloying elements into the joint and the diffusion of elements out of the joint region induces isothermal solidification whilst the joint is held at the bonding temperature. The TLP bonding behaviour of the HSLA steel as a function of bonding parameters was investigated and the quality of the joint region determined using metallurgical techniques (light and scanning electron microscopy, energy dispersive spectroscopy) and mechanical testing.


2011 ◽  
Vol 2011 (HITEN) ◽  
pp. 000077-000083 ◽  
Author(s):  
Brian Grummel ◽  
Habib A. Mustain ◽  
Z. John Shen ◽  
Allen R. Hefner

Transient liquid phase (TLP) bonding is an advanced die-attach technique for wide-bandgap power semiconductor and high-temperature packaging. TLP bonding advances current soldering techniques by raising the melting point to over 500 °C without detrimental high-lead materials. The bond also has greater reliability and rigidity due in part to a bonding temperature of 200 °C that drastically lowers the peak bond stresses. Furthermore, the thermal conductivity is increased 67 % while the bond thickness is substantially reduced, lowering the thermal resistance by an order of magnitude. This work provides an in-depth examination of the TLP fabrication methodology utilizing mechanical and thermal experimental characterization data along with thermal reliability results.


2018 ◽  
Vol 53 (2) ◽  
pp. 147-160 ◽  
Author(s):  
D. H. Jung ◽  
A. Sharma ◽  
M. Mayer ◽  
J. P. Jung

Abstract In this study, the authors have reviewed recent advances on the transient liquid phase (TLP) bonding technology for various applications especially power module packaging in view of the recent increasing demand for the production of vehicles, smartphones, semiconductor devices etc. TLP bonding is one of the potential technologies from clean technology that can replace the Pb-base solder technology without causing any serious environmental issues. It is based on the concept of both brazing as well as diffusion bonding. During TLP bonding, the liquid phase is transiently formed at the bonding interface. At this point, the melting point of filler metal increases due to the diffusion of element which degrades the melting point from liquid phase to base metal. Subsequently, the bonding occurs by isothermal solidification at the bonding temperature of liquid phase. Here, after bonding, the melting temperature of the joint layer becomes higher than bonding temperature. This review introduces the various aspects of TLP bonding including its principle, materials, applications, advantages and properties in detail.


Materials ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 236
Author(s):  
Kunpeng Du ◽  
Jin Huang ◽  
Jing Chen ◽  
Youbing Li ◽  
Chaolong Yang ◽  
...  

The polypropylene/aluminum alloy hybrid was prepared via an ultrasonic-assisted hot-pressing technology (UAHPT). The mechanical property and structure of the UAHPT processed polypropylene/aluminum alloy hybrid were explored by the tensile shear test, scanning electron microscopy (SEM), and atomic force microscopy (AFM), respectively. Prior to obtaining the UAHPT processed hybrid, the microporous structures were prepared by the anodic oxidation in a phosphoric acid solution in which the polypropylene (PP) melt flowed into and formed the micro mechanical interlocking structure at the interface of polypropylene/aluminum alloy. The effects of bonding temperature, pressing pressure, ultrasonic amplitude, and ultrasonic time on the bonding properties of the hybrids were investigated via orthogonal experiment. The UAHPT processed hybrid was strengthened and the maximal tensile shear strength reached up to 22.43 MPa for the polypropylene/aluminum alloy hybrid prepared at the optimum vibration processing parameters.


2011 ◽  
Vol 46 (16) ◽  
pp. 5305-5323 ◽  
Author(s):  
Grant O. Cook ◽  
Carl D. Sorensen

AbstractTransient liquid phase (TLP) bonding is a relatively new bonding process that joins materials using an interlayer. On heating, the interlayer melts and the interlayer element (or a constituent of an alloy interlayer) diffuses into the substrate materials, causing isothermal solidification. The result of this process is a bond that has a higher melting point than the bonding temperature. This bonding process has found many applications, most notably the joining and repair of Ni-based superalloy components. This article reviews important aspects of TLP bonding, such as kinetics of the process, experimental details (bonding time, interlayer thickness and format, and optimal bonding temperature), and advantages and disadvantages of the process. A wide range of materials that TLP bonding has been applied to is also presented. Partial transient liquid phase (PTLP) bonding is a variant of TLP bonding that is typically used to join ceramics. PTLP bonding requires an interlayer composed of multiple layers; the most common bond setup consists of a thick refractory core sandwiched by thin, lower-melting layers on each side. This article explains how the experimental details and bonding kinetics of PTLP bonding differ from TLP bonding. Also, a range of materials that have been joined by PTLP bonding is presented.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1504
Author(s):  
Chengcong Zhang ◽  
Amir Shirzadi

Joining heat conducting alloys, such as copper and its alloys, to heat resistant nickel-based superalloys has vast applications in nuclear power plants (including future fusion reactors) and liquid propellant launch vehicles. On the other hand, fusion welding of most dissimilar alloys tends to be unsuccessful due to incompatibilities in their physical properties and melting points. Therefore, solid-state processes, such as diffusion bonding, explosive welding, and friction welding, are considered and commercially used to join various families of dissimilar materials. However, the solid-state diffusion bonding of copper alloys normally results in a substantial deformation of the alloy under the applied bonding load. Therefore, transient liquid phase (TLP) bonding, which requires minimal bonding pressure, was considered to join copper alloy (C18150) to a nickel-based superalloy (GH4169) in this work. BNi-2 foil was used as an interlayer, and the optimum bonding time (keeping the bonding temperature constant as 1030 °C) was determined based on microstructural examinations by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), tensile testing, and nano-hardness measurements. TLP bonding at 1030 °C for 90 min resulted in isothermal solidification, hence obtained joints free from eutectic phases. All of the tensile-tested samples failed within the copper alloy and away from their joints. The hardness distribution across the bond zone was also studied.


2018 ◽  
Vol 206 ◽  
pp. 03004 ◽  
Author(s):  
Xiong Yue ◽  
Fengmei Liu ◽  
Hexing Chen ◽  
Di Wan ◽  
Hongbo Qin

Transient liquid phase (TLP) bonding of Ni3Al-based superalloy IC10 was carried out using the interlayer based on the base metal which added B and Hf as the melting point depressant elements. The effect of bonding temperature (1250 – 1270 °C) on the microstructure evolution of bonding joints were investigated. Microstructure of bonding joint composed of isothermally solidification zone (ISZ) formed γ’ phase and athermally solidified zone (ASZ) which consists of newly formed γ+γ’ reticular eutectic among with borides and carbides. Boride precipitates are not formed in diffusion affected zone (DAZ) and the boundary between ASZ and ISZ become not obvious. Isothermally solidification rate decreases as the increase of the bonding temperature.


1997 ◽  
Vol 3 (2) ◽  
pp. 130-138
Author(s):  
W.F. Gale ◽  
Y. Guan ◽  
S.V. Orel

Abstract: Transient liquid phase (TLP) bonding is a joining process in which a liquid-forming interlayer is placed between the substrates to be joined. At the bonding temperature, the interlayer initially liquates. Subsequently, interdiffusion between the liquid interlayer and the adjacent substrates results in a change in the overall composition of the joint, such that isothermal resolidification of the joint takes place. Standard models of the TLP process assume the sequential occurrence of discrete dissolution, isothermal solidification, and homogenization processes. This study uses edge-on transmission electron microscopy investigations to challenge the general applicability of such standard models to the TLP bonding of a variety of systems involving the B2 type intermetallic compound NiAl as a substrate material. This article considers the formation of boride phases apparently at the bonding temperature in NiAl/Ni-Si-B/Ni bonds. The precipitation of repeating sequences of phases in NiAl/Cu/Ni joints and the reliquation of the NiTi substrate in NiAl/Cu/NiTi bonds after the completion of isothermal solidification are examined.


2012 ◽  
Vol 2012 (DPC) ◽  
pp. 002509-002542 ◽  
Author(s):  
Eric F. Pabo ◽  
Viorel Dragoi ◽  
Tian Tang ◽  
Thorsten Matthias

Metal based bonding processes are commonly selected because of the need for a conductive interface along with a high degree of hermeticity. Metal based bonding process can be based on solid diffusion which is commonly called thermo-compression or can be based on liquefying part or all of the metal in the bond interface. Thermo-compression bonding has the primary challenges of being slow because it is based on solid diffusion and has very poor step coverage. The most common liquid metal bonding processes are commonly called solder or eutectic bonding. The solder or eutectic bonding process allows some step coverage and the time required for the process is driven by the maximum temperature required, the residence time at this temperature and the maximum ramp rate. The process temperature and the required process time can be reduced by selecting an alloy with a low melting point; however this reduced melting point reduces the maximum post bond working temperature. TLP (Transient Liquid Phase) also known as SLID (Solid Liquid Inter Diffusion) bonding decouples the bonding temperature from the post bond maximum working temperature which allows the selection of alloys that reduce the bonding temperature while maintaining a high post bond maximum working temperature. For example a Cu-Sn TLP process can be performed at 280°C that will survive post bond temperature of up to 415°C. The fundamentals of TLP bonding will be reviewed and data will be presented for Cu-Sn TLP bonding


Sign in / Sign up

Export Citation Format

Share Document