scholarly journals Improving the combination of electrical conductivity and tensile strength of Al 1070 by rotary swaging deformation

2019 ◽  
Vol 13 ◽  
pp. 102236 ◽  
Author(s):  
Yue Yang ◽  
Jinfeng Nie ◽  
Qingzhong Mao ◽  
Yonghao Zhao
2020 ◽  
Vol 1010 ◽  
pp. 638-644
Author(s):  
Mohd Pisal Mohd Hanif ◽  
Abd Jalil Jalilah ◽  
Mohd Fadzil Hanim Anisah ◽  
Arumugam Tilagavathy

Biopolymer-based conductive polymer composites (CPCs) would open up various possibilities in biomedical applications owing to ease of processing, renewable resource and environmentally friendly. However, low mechanical properties are a major issue for their applications. In this study, the investigated the conductivity of chitosan/ PEO blend films filled with carbonized wood fiber (CWF) prepared by solution casting. The effect of CWF was also investigated on tensile properties and their morphological surfaces. The tensile results from different ratios of chitosan/PEO blend films without CWF show that the tensile strength and modulus increased with the increase of chitosan content and chitosan/PEO blend film with 70/30 ratio exhibited the best combination of tensile strength and flexibility. However, a reduction of tensile strength was observed when CWF amount was increased while the modulus of the tensile shows an increment. The film also exhibited higher electrical conductivity as compared to low chitosan ratio. The addition of CWF greatly enhanced the conductivity three-fold from 10-10 to 10-6 S/cm. The electrical conductivity continued to increase with the increase of CWF up to 30wt%. The surface morphology by Scanning Electron Microscopy (SEM) exhibits the absence of phase separation for the blends indicating good miscibility between the PEO and chitosan. Incorporation of CWF into the blend films at 5wt% showed agglomeration. However, the increase of CWF created larger agglomerations that formed conductive pathways resulting in improved conductivity. FTIR analysis suggested that intermolecular interactions occurred between chitosan and PEO while CWF interacts more with the protons of PEO.


2010 ◽  
Vol 148-149 ◽  
pp. 416-419
Author(s):  
Bao Hong Tian ◽  
Cheng Dong Xia ◽  
Shu Guo Jia

Cu-Al2O3 composites were prepared by a new simplified internal oxidation process integrating with powder metallurgical process, and then the hot extrusion and the cold rolling processes were carried out. The microstructure, electrical conductivity, hardness, tensile strength and thermal stability of the composites were investigated. The results show that Cu-Al2O3 composites were fabricated successfully by the simplified process in which internal oxidation completed during the sintering. There are a mass of fine Al2O3 particles in size varying from 5 nm to 20nm dispersed in copper matrix after sintering 950 for 4h. After sintered at 950 for 4h and extruded at 950 followed with the cold deforming of 80%, the electrical conductivity, hardness, tensile strength and softening temperature of composite reach 81%IACS, 137HV, 561MPa and 850 respectively. It is considered that the dispersion strengthening and strain hardening have greatly contribution to the Cu-Al2O3 composites fabricated with the simplified process.


2021 ◽  
Vol 21 (9) ◽  
pp. 4897-4901
Author(s):  
Hyo-Sang Yoo ◽  
Yong-Ho Kim ◽  
Hyeon-Taek Son

In this study, changes in the microstructure, mechanical properties, and electrical conductivity of cast and extruded Al–Zn–Cu–Mg based alloys with the addition of Li (0, 0.5 and 1.0 wt.%) were investigated. The Al–Zn–Cu–Mg–xLi alloys were cast and homogenized at 570 °C for 4 hours. The billets were hot extruded into rod that were 12 mm in diameter with a reduction ratio of 38:1 at 550 °C. As the amount of Li added increased from 0 to 1.0 wt.%, the average grain size of the extruded Al alloy increased from 259.2 to 383.0 µm, and the high-angle grain boundaries (HGBs) fraction decreased from 64.0 to 52.1%. As the Li content increased from 0 to 1.0 wt.%, the elongation was not significantly different from 27.8 to 27.4% and the ultimate tensile strength (UTS) was improved from 146.7 to 160.6 MPa. As Li was added, spherical particles bonded to each other, forming an irregular particles. It is thought that these irregular particles contribute to the strength improvement.


2021 ◽  
Vol 1026 ◽  
pp. 84-92
Author(s):  
Tao Qian Cheng ◽  
Zhi Hui Li

Al-Zn-Mg-Cu alloy have been widely used in aerospace industry. However, there is still a lack of research on thermal stability of Al-Zn-Mg-Cu alloy products. In the present work, an Al-Zn-Mg-Cu alloy with T79 and T74 states was placed in the corresponding environment for thermal exposure experiments. Performance was measured by tensile strength, hardness and electrical conductivity. In this paper, precipitation observation was analyzed by transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HREM). The precipitations of T79 state alloy were GPⅡ zone, η' phase and η phase while the ultimate tensile strength, hardness and electrical conductivity were 571MPa, 188.2HV and 22.2MS×m-1, respectively. The mechanical property of T79 state alloy decreased to 530MPa and 168.5HV after thermal exposure. The diameter of precipitate increased and the precipitations become η' and η phase at the same time. During the entire thermal exposure, T74 state alloy had the same mechanical property trend as T79 state alloy. The precipitate diameter also increased while the types of precipitate did not change under thermal exposure. The size of precipitates affected the choice of dislocation passing through the particles to affect the mechanical properties.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1511 ◽  
Author(s):  
Nannan Zhao ◽  
Chunyan Ban ◽  
Hongfei Wang ◽  
Jianzhong Cui

The mechanical properties and electrical conductivity of 6063 aluminum alloy subjected to equal-channel angular press (ECAP) at room temperature (RT), 200 °C, and two-step temperature schedule (TST) have been investigated in this study. The TST refers to one pass at 200 °C followed by further successive pressing at RT. It is shown that this method is effective in obtaining the combination of high strength and electrical conductivity. After two passes, the higher strength can be achieved in TST condition (328 MPa yield strength and 331 MPa ultimate tensile strength), where the changing parameter is processing temperature from the first pass at 200 °C to the second pass at RT, as compared to two passes in RT condition (241 MPa yield strength and 250 MPa ultimate tensile strength) and two passes in 200 °C condition (239 MPa yield strength and 258 MPa ultimate tensile strength). This performance could be associated with grain refinement and nanosized precipitates in TST condition. Moreover, in contrast to RT condition, a higher electrical conductivity was observed in TST condition. It reveals that high strength and electrical conductivity of 6063 aluminum alloy can be obtained simultaneously by ECAP processing in TST condition because of ultrafine-grained microstructure and nanosized precipitates.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Seyed Mohsen Hosseinian ◽  
Vahid Najafi Moghaddam Gilani ◽  
Peyman Mehraban Joobani ◽  
Mahyar Arabani

The construction of suitable roads in rainy areas has created problems in the construction process due to the low resistance of asphalt to moisture. To solve this problem, materials are commonly used that make mixtures resistant to moisture; however, these materials may reduce the dynamic resistance of asphalt. Therefore, materials should be used that, in addition to increasing the dynamic resistance, also increase the moisture resistance of asphalt mixtures. One of these materials used in this research is steel wool fiber (SWF), which in addition to creating conductive roads also could have a significant effect on moisture resistance. In this study, the impact of 2%, 4%, 6%, 8%, and 10% SWF on the Marshall stability and moisture sensitivity of mixtures was investigated using the Marshall stability and indirect tensile strength (ITS) tests, respectively. Moreover, using SWF as a conductive fiber, the conductivity properties of asphalt mixtures were explored to find the optimal amount of electrical conductivity. The results of the Marshall stability test indicated that by increasing SWF contents, the stability of mixtures increased, compared with the base sample, and greater amounts of 6% SWF resulted in the reduction of the Marshall stability. The results of ITS showed that modification of bitumen by SWF increased ITS and tensile strength ratio (TSR) amounts of mixtures. 6% SWF was the optimal amount for enhancing the resistance of asphalt mixtures to moisture sensitivity. The results of the electrical resistivity test showed that the resistivity had three phases: high resistivity, transit, and low resistivity. Mixtures containing less than 4% SWF illustrated an insulating behavior, with electrical resistivity greater than 7.62  ×  108  Ω . m . At the transit phase, the resistivity of mixtures had a sharp reduction from 7.62  ×  108  Ω . m to 6.17  ×  104  Ω . m . Finally, 8% SWF was known as the optimal content for the electrical conductivity of mixtures.


2010 ◽  
Vol 17 (01) ◽  
pp. 93-97 ◽  
Author(s):  
HOON CHO ◽  
BYOUNG-SOO LEE ◽  
HYUNG-HO JO

The effect of thermal heat treatment on the mechanical and electrical properties of Cu–Ag alloys was investigated. The homogenization heat treatment leads to an increase in tensile strength and a decrease in electrical conductivity due to dissolution of Ag into copper matrix. Also, it is shown that electrical conductivity of as-cast Cu–Ag alloys decreases with increasing Ag content. In contrast, the aging heat treatment gives rise to increase both the tensile strength and electrical conductivity because the Ag solute diffuses out from copper matrix during aging heat treatment. Therefore, it can be mentioned that the electrical conductivity of Cu–Ag alloys depends on Ag solute in copper matrix. Also, aging treatment is favorable to acquire high strength and high electrical conductivity.


2016 ◽  
Vol 870 ◽  
pp. 95-100
Author(s):  
E.G. Demyanenko ◽  
I.P. Popov

The paper investigates a variety of properties of thin aluminum sheets fabricated using physical action of pulsed magnetic fields and weak pulsed current. The possibility of using thermal resistant aluminum alloys parts in aircraft manufacturing, including ones made by forming processes which require sufficiently high plasticity of initial sheets, is widely discussed. Two possible technological options have been tested for manufacturing sheet samples of Al-Cu-Mn and Al-Mg-Si alloys. A set of properties has been investigated (thermal resistance, mechanical properties, specific electrical conductivity, macrostructure of weldability zones, corrosion resistance of alloy samples. Casted workpieces were thermo-mechanically treated by heating and upsetting to 50 – 55 % with consequent hardening and aging. After that workpieces were subjected to multi-cycle rolling up to 0.3x10-3 m. The achieved results demonstrate that after 400 hours of exposure to 250°C, the thermal resistant parameters by tensile strength are higher after the exposure to weak pulsed currents than after the exposure to pulsed magnetic fields. Maximal thermal resistant parameters by tensile strength and maximal electrical conductivity was achieved in 01327+Sc (Al-Mg-Si) alloy. The mechanical properties, corrosion resistance and Erichsen formability parameters were also determined.


2009 ◽  
Vol 79-82 ◽  
pp. 1687-1690
Author(s):  
Xing Min Cao ◽  
Yu Bin Zhu ◽  
Fuan Guo ◽  
Chao Jian Xiang

Electrical conductivity, tensile strength and micro-hardness of Cu-3.5wt.%Ti-0.1wt.%Zr-RE alloy were investigated after optimizing technics of plastic deformation and the heat treatment. The results show that good combination of the physical and mechanical properties, such as tensile strength 1160 MPa, micro-hardness 335 Hv and electrical conductivity 15 IACS% can be obtained on peak aging at 420°C for 7 h. Maximum strength was associated with the precipitation of metastable, ordered and coherent β/ (Cu4Ti) phase on peak aging. Then the strength decreased due to the precipitation of β (Cu3Ti) phase in alloys overaged.


2014 ◽  
Vol 633-634 ◽  
pp. 63-67
Author(s):  
Ke Ming Liu ◽  
Z.Y. Jiang ◽  
Yong Hua Wang ◽  
Z.B. Chen ◽  
Jing Wei Zhao ◽  
...  

Cu-14Fe and Cu-17Fe alloys were produced by casting and processed into in situ composites by hot and cold deformation, and intermediate heat treatment. The microstructures were investigated by using a scanning electron microscope and an optical microscope. The electrical conductivity was evaluated by using a digital micro-ohmmeter. The tensile strength was measured by using an electronic tensile-testing machine. The results show that there are similar cast and deformation microstructures in Cu-14Fe and Cu-17Fe. The tensile strength of deformation-processed Cu-17Fe in situ composite is much higher than that of Cu-14Fe, while the conductivity of deformation-processed Cu-17Fe in situ composite is slightly lower than that of Cu-14Fe at the same cold deformation strain. The Cu-17Fe in situ composite produced by using proper thermo-mechanical processing possesses a good combination of tensile strength and electrical conductivity.


Sign in / Sign up

Export Citation Format

Share Document