Exogenous melatonin promotes biomass accumulation and photosynthesis of kiwifruit seedlings under drought stress

2019 ◽  
Vol 246 ◽  
pp. 34-43 ◽  
Author(s):  
Dong Liang ◽  
Zhiyou Ni ◽  
Hui Xia ◽  
Yue Xie ◽  
Xiulan Lv ◽  
...  
Author(s):  
Anie Thomas ◽  
R. Beena

Drought stress reduces photosynthetic rate and leading to depletion of the energy source and lowers the yield. Under drought stress, reduced turgor pressure cause inhibition of cell elongation and impaired mitosis leads to reduction in growth rate. Role of sucrose metabolism under drought adaptation and response of plants to stress in different tissues and at different developmental stages. Cytoplasmic sucrose synthesis is more under drought condition and there is differential expression in tolerant and susceptible cultivars. Under drought condition, plant start consuming its own sink for its survival thus reducing sucrose concentration. But reduction in sucrose concentration is less in drought tolerant plants. Drought stress induced an increase of the root/shoot ratio, which was due to the increased inhibition of biomass accumulation of shoots compared to roots. Drought stress enhanced the activities of sucrose metabolic enzymes and up-regulated the expression of genes such as SPS, SuSy and INV. In addition, drought stress up-regulated the expression levels of SWEET and SUC and promoted the transport of sucrose from source to sink.


2019 ◽  
Vol 10 ◽  
Author(s):  
Bo Huang ◽  
Yang-Er Chen ◽  
Yu-Qing Zhao ◽  
Chun-Bang Ding ◽  
Jin-Qiu Liao ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2828
Author(s):  
Md. Shakhawat Hossain ◽  
Jing Li ◽  
Ashim Sikdar ◽  
Mirza Hasanuzzaman ◽  
Ferdinand Uzizerimana ◽  
...  

Tartary buckwheat is one of the nutritious minor cereals and is grown in high-cold mountainous areas of arid and semi-arid zones where drought is a common phenomenon, potentially reducing the growth and yield. Melatonin, which is an amphiphilic low molecular weight compound, has been proven to exert significant effects in plants, under abiotic stresses, but its role in the Tartary buckwheat under drought stress remains unexplored. We evaluated the influence of melatonin supplementation on plant morphology and different physiological activities, to enhance tolerance to posed drought stress by scavenging reactive oxygen species (ROS) and alleviating lipid peroxidation. Drought stress decreased the plant growth and biomass production compared to the control. Drought also decreased Chl a, b, and the Fv/Fm ratio by 54%, 70%, and 8%, respectively, which was associated with the disorganized stomatal properties. Under drought stress, H2O2, O2•−, and malondialdehyde (MDA) contents increased by 2.30, 2.43, and 2.22-folds, respectively, which caused oxidative stress. In contrast, proline and soluble sugar content were increased by 84% and 39%, respectively. However, exogenous melatonin (100 µM) could improve plant growth by preventing ROS-induced oxidative damage by increasing photosynthesis, enzymatic antioxidants (superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase), secondary metabolites like phenylalanine ammonialyase, phenolics, and flavonoids, total antioxidant scavenging (free radical DPPH scavenging), and maintaining relative water content and osmoregulation substances under water stress. Therefore, our study suggested that exogenous melatonin could accelerate drought resistance by enhancing photosynthesis and antioxidant defense in Tartary buckwheat plants.


Agronomy ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 381 ◽  
Author(s):  
Alessandro Tribulato ◽  
Stefania Toscano ◽  
Virginia Di Lorenzo ◽  
Daniela Romano

One of the main problems in the Mediterranean area is the long dry season, and hence there is a need to individuate plants that are tolerant to low water availability. The mechanisms adopted by different plant species to overcome drought stress conditions and reduce water loss could allow the identification of tolerant species to drought stress, thereby increasing the sustainability of ornamental plant utilization in green areas. In this regard, the aim of this study was to investigate the morphological, physiological, and anatomical responses of Polygala myrtifolia L. and Viburnum tinus L. ‘Lucidum’ irrigated under different irrigation deficits. In pot plants, four water regimes were adopted (10%, 20%, 30% and 40% of water container capacity (WC)). Drought stress significantly reduced the biomass accumulation in both shrubs. In Viburnum, total dry biomass reduction was observed only in 10% WC with a reduction by 33%, while in Polygala, this was observed both in 20% WC and 10% WC (~48%). The higher deficit irrigation conditions improve the root-to-shoot ratio, which was increased in Polygala 20% WC (by 20%) but not in Viburnum ones. The latter species shows higher drought tolerance, as demonstrated by the gas exchange values, chlorophyll fluorescence, leaf structure, and water relationship.


2016 ◽  
Vol 75 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Zamin Shaheed Siddiqui ◽  
Huda Shahid ◽  
Jung-Il Cho ◽  
Sung-Han Park ◽  
Tae-Hun Ryu ◽  
...  

AbstractThe physiological responses of two halophytic grass species, Halopyrum mucronatum (L.) Staph. and Cenchrus ciliaris (L.), under drought stress were evaluated. Biomass accumulation, relative water content, free proline, H2O2content, stomatal conductance, photosynthetic performance and quantum yield (Fv/Fmratio) were studied. Under drought conditions, these halophytic plants expressed differential responses to water deficit. Stomatal conductance and free proline content were higher in H. mucronatum than in C. ciliaris, while H2O2content in H. mucronatum was substantially lower than in C. ciliaris. Performance index showed considerable sensitivity to a water deficit condition, more so in C. ciliaris than in H. mucronatum. Results were discussed in relation to comparative physiological performance and antioxidant enzymes activity of both halophytic grasses under drought stress.


2020 ◽  
Vol 21 (15) ◽  
pp. 5587
Author(s):  
Rong Zhou ◽  
Hongjian Wan ◽  
Fangling Jiang ◽  
Xiangnan Li ◽  
Xiaqing Yu ◽  
...  

The atmospheric CO2 concentration (a[CO2]) is increasing at an unprecedented pace. Exogenous melatonin plays positive roles in the response of plants to abiotic stresses, including drought and cold. The effect of elevated CO2 concentration (e[CO2]) accompanied by exogenous melatonin on plants under drought and cold stresses remains unknown. Here, tomato plants were grown under a[CO2] and e[CO2], with half of the plants pre-treated with melatonin. The plants were subsequently treated with drought stress followed by cold stress. The results showed that a decreased net photosynthetic rate (PN) was aggravated by a prolonged water deficit. The PN was partially restored after recovery from drought but stayed low under a successive cold stress. Starch content was downregulated by drought but upregulated by cold. The e[CO2] enhanced PN of the plants under non-stressed conditions, and moderate drought and recovery but not severe drought. Stomatal conductance (gs) and the transpiration rate (E) was less inhibited by drought under e[CO2] than under a[CO2]. Tomato grown under e[CO2] had better leaf cooling than under a[CO2] when subjected to drought. Moreover, melatonin enhanced PN during recovery from drought and cold stress, and enhanced biomass accumulation in tomato under e[CO2]. The chlorophyll a content in plants treated with melatonin was higher than in non-treated plants under e[CO2] during cold stress. Our findings will improve the knowledge on plant responses to abiotic stresses in a future [CO2]-rich environment accompanied by exogenous melatonin.


2021 ◽  
Vol 41 (4) ◽  
Author(s):  
赵成凤,王晨光,李红杰,郑学慧,杨梅,张仁和 ZHAO Chenfeng

Sign in / Sign up

Export Citation Format

Share Document