The energy costs of walking, carrying and pulling loads on flat surfaces by Brahman cattle and swamp buffalo

1990 ◽  
Vol 50 (1) ◽  
pp. 29-39 ◽  
Author(s):  
P. R. Lawrence ◽  
R. J. Stibbards

ABSTRACTThe extra energy for walking compared with standing still (EW) (J/m per kg live weight) was measured in three Brahman cattle and two water buffalo. Ew was not affected by species or speed within the most comfortable range of speeds (V = 0·6 to 1·0 m/s) but over the whole range tested, Ew = 0·947F + 1·99 (r = 0·66, no. = 61) with average Ew = 2·1 (s.e. 0·06).The extra energy cost of carrying loads while walking (Ec) (J/m per kg carried) was measured using two Brahman cattle, two water buffalo and a pony. Ec was independent of load (up to 70 kg) and speed but was generally lower when loads were placed over the animals' shoulders instead of on their backs. Average values for the cattle, buffaloes and the pony were 2·6, 4·2 and 3·3, respectively.The efficiency of doing work defined as: work done/energy expended was measured in two Brahman cattle and two water buffalo and gave average values of 0·30 and 0·37 respectively for the two species. Efficiency was proportionately about 0·03 higher for animals wearing a collar than when wearing a single yoke but was unaffected by whether the animals wore single or double yokes, by the speed of travel, the size of the load or whether the load was steady or variable.Along with appropriate values for the energetic efficiency of raising body weight when walking uphill, these data are used to derive a factorial equation for estimating the energy expenditure of animals working in the field.

2000 ◽  
Vol 83 (1) ◽  
pp. 35-41 ◽  
Author(s):  
M. Lachica ◽  
J. F. Aguilera

The energy cost of locomotion of four Iberian pigs was measured in two experiments conducted when the animals averaged 41·3 (se 0·1) kg (first experiment) and 84·1 (se 0·1) kg (second experiment). The heat production of the pigs was determined when standing or walking at a speed of 0·555 m/s on a treadmill enclosed in a confinement-type respiration chamber, on different slopes (-10·5, 0, and +10·5 % in the first experiment, and -5·25, 0 and +10·5 % in the second experiment). The energy costs of locomotion, estimated from the coefficients of linear regressions of heat production per kg body weight (BW) on distance travelled, were in the first experiment 2·99, 3·31 and 5·88 J/kg BW per m for -10·5, 0, and +10·5 % inclines respectively, and 2·56, 2·84 and 7·13 J/kg BW per m for -5·25, 0 and +10·5 % inclines respectively, in the second experiment. The net energy cost of locomotion on the level appeared to be independent of live weight, attaining a value of 2·98 J/kg BW per m. Also, it was found that within experiments the net energy cost of walking on negative slopes was similar to that for locomotion on the level, indicating that no energy was recovered on vertical descent. Mean values were 3·11 and 2·72 kJ/kg BW per m for the light and heavy pigs respectively. The energy cost of raising 1 kg BW one vertical metre was found to be 27·1 J/kg BW per m in the first experiment and 40·0 J/kg BW per m in the second experiment. Correspondingly, the calculated efficiency for upslope locomotion appeared to decline with increasing BW, resulting in average values of 36·2 and 24·5 %.


1997 ◽  
Vol 64 (2) ◽  
pp. 209-215 ◽  
Author(s):  
A. Fall ◽  
R. A. Pearson ◽  
P. R. Lawrence

AbstractThe Oxylog, a portable breath-by-breath gas analyser, was used on seven animals to determine standing metabolic rate, energy cost of walking on soils of different consistencies and efficiency of work ploughing and carting. The average standing metabolic rate of animals was 5·63 (s.e. 0·12) W/kg M00·75. The consistency of the soil on which animals worked had a marked effect on their energy cost of walking which was 1·59 (s.e. 0·069) on unploughed soil, 2·15 (s.e. 0·084) on ploughed soil and 1·0 (s.e. 0·10) J/m per kg live weight on laterite tracks. The efficiency of ploughing sandy soils (i.e. ratio of work done to energy used for work) was 0·32 and was not significantly different from the efficiency of carting with different loads. The efficiency of doing work was not influenced by the type of work performed, the draught force exerted or the walking speed.


1992 ◽  
Vol 54 (1) ◽  
pp. 153-156 ◽  
Author(s):  
J. T. Dijkman

The extra energy used for walking on the level and on negative gradients above that used when standing still (Ew) (J/m per kg live weight) was measured in two entire male donkeys (Equus asinus). Ew was not affected by speed within the measured range (V = 0·6 to 1·3 m/s) but gradient (0, −10%, −15%) had a significant effect Ew−10% = 0·97 (s.e. 0·02), Ew−10% = 0·55 (s.e. = 0·03) and Ew−15% = 0·67 (s.e. 0·03).The extra energy cost of carrying loads (Ec), defined as J/m per kg carried was measured using the same animals. Loads were placed over the animals shoulders and speed was varied within the range 0·6 to 1·3 m/s (Eclevel = 1·1 (s.e. 0·04), Ec−10% = 2·7 (s.e. 0·17) and Ec−15% = 3·3 (s.e. 0·20) were significantly different.The energy cost of pulling loads (Ep) (f/m per kg) was measured while the animals pulled loads up to proportionately 0·17 of their live weight. The animals wore a breast-plate harness and walking speed was varied within the range 0·6 to 1·3 m/s. Mean values were 26·5 (s.e. 0·72) on the level, 15-3 (s.e. 1·2) on the −10% gradient and 6·2 (s.e. 0·43) on the −15% gradient.The two donkeys used in this experiment were more efficient in both carrying and pulling loads than oxen and buffaloes. Negative gradients have a significant effect on energy consumption and when estimating the energy expenditure of working animals this factor should be taken into account.


1984 ◽  
Vol 38 (1) ◽  
pp. 53-56 ◽  
Author(s):  
I. Adam ◽  
B. A. Young ◽  
A. M. Nicol ◽  
A. A. Degen

ABSTRACT1. Energy costs of eating were determined from the increased rates of oxygen uptake by five steers aged 18 to 20 months and weighing 298 to 407 kg.2. Five diets were tested: pelleted concentrate (500 g barley grain per kg, 400 g lucerne meal per kg, 90 g soya bean meal per kg, and 10 g NaCl, trace mineral and vitamin supplement per kg); pelleted lucerne; lucerne hay; chopped-grass hay (700 g brome per kg, 300 g fescue per kg); and chopped fresh turnips. The dry-matter concentration of the pellets and hays was approximately 900 g per kg while the turnips contained only 140 g per kg.3. The rates of ingestion differed markedly between diets during the (15 to 50 min) twice-daily (morning and evening) feeding periods. On a dry-matter basis, the pellets were consumed most rapidly at a rate of 130 to 138 g per min, while the hays were consumed at approximately 38 g per min and the turnips at 30 g per min.4. The energy costs per min spent eating were similar for all rations (27·6 to 35·6 J/ kg live weight). However, because of different rates of ingestion, the energy costs per kg DM ingested were different: 222 to 238 J/kg live weight for the pelleted foods, 1029 J/kg live weight for the hays and 1427 J/kg live weight for the turnips.5. The energy cost of eating is more a function of time spent eating than a function of the amount of food ingested. Thus, rate of ingestion and duration of the meal are key factors in determining the energy cost of eating in cattle.


1984 ◽  
Vol 102 (3) ◽  
pp. 711-717 ◽  
Author(s):  
J. I. Richards ◽  
P. R. Lawrence

SummaryThe heart rates and corresponding energy expenditure of adult Brahman cattle (Bos indicus) and water buffalo (Bubalus bubalis) were measured whilst they were standing, walking at speeds of up to 1 m/sec and pulling loads of up to 50 kg for periods of 1–2 h/day. Correlations of heart rate with energy expenditure showed a positive linear relationship within species although a distinct difference was exhibited between species. However, when heart rate and energy expenditure were expressed relative to their respective resting values (RHR and REE respectively), the results for all animals fitted the same line:REE = 2·251 RHR – 0·954 (r = 0·93; n = 49).More importantly, the relative heart rate and actual energy expenditure per unit metabolic body weight (EEW) for all animals fitted a common line:EEW = 24·94 RHR – 16·25 (r = 0·91; n = 49),where EEW is in watts/kg0·75 and RHR = heart rate of the working animal/heart rate at rest. This assessment of the energy expenditure from measurement of heart rate and live weight thus allows a prediction to be made of the energy requirements of working draught cattle under field conditions.


1977 ◽  
Vol 37 (3) ◽  
pp. 355-363 ◽  
Author(s):  
J. D. Pullar ◽  
A. J. F. Webster

1. Measurements were made of energy balance by direct calorimetry, and of nitrogen balance in groups of lean and congenitally obese (‘fatty’) Zucker rats at body-weights of 200 and 350 g given a highly digestible semisynthetic diet at 14.0 or 18.4 g/rat per 24 h.2. Losses of food energy and N in faeces were very small. The fatty rats lost much more N in urine than did lean rats. Despite this the proportion of gross energy that was metabolized was 0.92 for both fatty and lean rats.3. In all trials, fatty rats lost a smaller proportion of metabolizable energy (ME) as heat and deposited less as protein than thin rats but deposited much more as fat.4. The amounts of ME required to deposit 1 kJ of protein and 1 kJ of fat respectively were shown by regression analysis to be 2.25 (±0.16) and 1.36 (±0.06) kJ respectively. These values agree extremely closely with recent, more tentative, estimates based on assumptions as to maintenance requirement which the present experiments were able to circumvent. It may be concluded with confidence that the energy costs of depositing 1 g of protein or fat are almost identical at 53 kJ ME/g.


1989 ◽  
Vol 69 (1) ◽  
pp. 161-172 ◽  
Author(s):  
C. B. BAILEY ◽  
J. E. LAWSON

Hereford and Angus bull calves were obtained from lines selected for an average of 18 yr for rapid growth on a high-energy diet (concentrate) or a low-energy diet (forage). They were given a typical feedlot diet (70% concentrate and 30% forage) in amounts about equal to 95% of the ad libitum intake and were slaughtered at a liveweight of 500 kg. Effects of breed, or of the selection diet given to the antecedents of the bulls, on rate and efficiency of gain of empty body, carcass, fat, protein, and energy were measured. Selection diet had no effect on rate or energetic efficiency of gain of the empty body or any of its constituents, nor on the distribution of the constituents of the gain between the carcass and the noncarcass portions of the empty body. This suggests that both selection diets exerted the same selection pressure for improved growth rate and feed efficiency when offspring resulting from selection were provided with a common high-energy diet and that either type of diet would, therefore, be appropriate for selecting animals for production systems that use high-energy diets. It was suggested that the main effect of selection was to increase the mature weight of the offspring. Comparing breeds, it was noted that Hereford bulls were heavier at birth, grew more slowly to weaning but more efficiently thereafter, and their carcasses were a smaller proportion of empty live weight than were those of Angus bulls. Key words: Diet, breed, growth, efficiency, selection, bull


2015 ◽  
Vol 15 (7&8) ◽  
pp. 685-693
Author(s):  
Chi-Hang F. Fung ◽  
H. F. Chau ◽  
Chi-Kwong Li ◽  
Nung-Sing Sze

We derive a formula for the time-energy costs of general quantum channels proposed in [Phys. Rev. A {\bf 88}, 012307 (2013)]. This formula allows us to numerically find the time-energy cost of any quantum channel using positive semidefinite programming. We also derive a lower bound to the time-energy cost for any channels and the exact the time-energy cost for a class of channels which includes the qudit depolarizing channels and projector channels as special cases.


1983 ◽  
Vol 100 (1) ◽  
pp. 13-23 ◽  
Author(s):  
J. B. Moran

SUMMARYThe results of 62 comparative digestibility and nitrogen balance trials of Asiatic water buffalo and Zebu cattle fed the same roughage or mixed diet were analysed to test for species differences in various nitrogen input-output relationships. The influence of dietary metabolizable energy content on the utilization of dietary or apparently digested nitrogen (ADN) was also investigated.There was no difference between buffaloes and Zebus in their ability to digest dietary nitrogen. The true nitrogen digestibility was calculated to be 81% and the metabolic faecal nitrogen excretion to be 0·36 g N/lOOg dry-matter intake. The buffaloes had lower rates of excretion of urinary nitrogen per unit increase in ADN, and at the same intake of ADN (143 mg/kg live weight/day), they had the higher nitrogen balance: 58v.48 mg/kg live weight/day. Dietary metabolizable energy content did not affect the utilization of digested nitrogen.Estimates of metabolic faecal nitrogen and endogenous urinary nitrogen excretions and of maintenance requirements for digested nitrogen were similar to those of tropical large ruminants reported by other workers. On low-quality (0·8% N) or medium-quality (1·6% N) diets, it was calculated that buffaloes would have nitrogen balances.


Sign in / Sign up

Export Citation Format

Share Document