The voluntary intake and utilization of roughage–concentrate diets by sheep. 1. Concentrate supplements for hay and straw

1971 ◽  
Vol 13 (1) ◽  
pp. 71-82 ◽  
Author(s):  
J. R. Crabtree ◽  
G. L. Williams

SUMMARYFour levels of a proprietary concentrate (0, 100, 200 and 400 g/day) were offered to Welsh Mountain ewe lambs receiving hay or straw ad libitum for 14 weeks. The apparent digestibility of the energy and nitrogen in the various diets was determined in a concurrent digestibility trial.The voluntary intakes of the straw and hay dry matter when given alone were 242 and 451 g/day respectively (28·4 and 49·2 g/kg W0·73 per day). Straw intake increased with an increase in concentrate feeding up to a level of 25% concentrate in the total dry matter and then declined. Hay intake declined linearly with increasing concentrate level (3 g/day decline per unit increase in the percentage of concentrate). In each case the total intake of dry matter and digestible energy increased with an increase in concentrate level.There was a positive within-treatment relationship between initial live weight and voluntary intake, an additional 0·019 Meal ME/day being consumed per kg increase in live weight. Within treatment groups lambs consuming relatively more food also made relatively higher weight gains. Estimates based on published standards of the metabolizable energy intakes required to produce the live weight changes observed on each treatment were considerably higher than the intakes recorded in the trial.

1971 ◽  
Vol 13 (1) ◽  
pp. 83-92 ◽  
Author(s):  
J. R. Crabtree ◽  
G. L. Williams

SUMMARYThree levels of soya bean meal (0%, 25% and 50% of the intake of hay dry matter) combined with three levels of pelleted barley (0%, 50% and 100% of the intake of hay dry matter) in a factorial arrangement of treatments were offered to Welsh Mountain ewe lambs receiving hay ad libitum for 14 weeks.When barley was not given, soya bean meal added at 25% of the hay intake increased hay voluntary intake from 287 g/day to 412 g/day but hay intake was depressed to 339 g/day by a further increase in the level of soya bean meal. When barley was given, soya bean meal did not affect hay intake. With one exception, an increase in barley reduced hay intake, with the result that there were no differences between treatments in the digestible energy intakes of lambs receiving barley at each level of soya bean meal. In general, it was found that an increase in the concentrate allowance (barley + soya bean) reduced hay intake, whereas an increase in the crude protein content of the concentrate increased hay intake. The relationship between live-weight change, metabolizable energy intake and live weight was examined by regression analysis. Although live weight and voluntary intake were unrelated at the start of the experiment, a positive relationship emerged as the experiment progressed.


1970 ◽  
Vol 12 (1) ◽  
pp. 23-36 ◽  
Author(s):  
T. T. Treacher

SUMMARY1. Scottish Half-bred ewes carrying twin foetuses were fed individually to make live-weight gains in the last six weeks of pregnancy of (1) 20%, (2) 10% and (3) 0% of their live weight in week 14 of pregnancy. In lactation the ewes were fed ad libitum. The lambs were removed 12 to 16 hr after parturition and the ewes were machine-milked twice daily for the first six weeks of lactation.2. Total birth weights per ewe of twin lambs from the treatments were (1) 10·10 kg, (2) 9·44 kg and (3) 8·18 kg and differed significantly.3. The level and pattern of voluntary intake in lactation did not differ significantly between the treatments. Total dry-matter intakes in the six weeks of lactation were (1) 121·9 kg (2) 105·9 kg and (3) 109·5 kg.4. The pregnancy treatments affected the level of milk production and the shape of lactation curves. The total yields in the first six weeks of lactation were (1) 58·8 kg, (2) 43·5 kg and (3) 26·9 kg. Higher contents of fat and protein and the lower content of lactose in the milk from treatment-3 ewes on days 1 and 3 of lactation indicated a slower onset of lactation in these ewes. Between days 7 and 35 of lactation the contents of fat and SNF were lowest on treatment 3 but the differences were not significant.5. The live-weight changes in lactation, which were in inverse order to the gains in late pregnancy, were (1) 3·4 kg, (2) 5·5 kg and (3) 9·5 kg.


1970 ◽  
Vol 12 (4) ◽  
pp. 591-599 ◽  
Author(s):  
N. Jackson ◽  
T. J. Forbes

SUMMARYHerbage from the same timothy/meadow fescue/white clover sward was ensiled at four different dry matter contents. The resulting silages had dry matter contents of 19·0, 27·3, 32·3 and 43·2%, the dry matter content increasing with the length of the wilting period. An experiment was carried out to determine the voluntary intake of the silages. Each silage was given to 7 animals individually, the mean live weight of these being 334 kg.Although the silages made from wilted herbage were lower in digestibility than that made from unwilted herbage, wilting increased dry matter intake and metabolizable energy (ME) intake. The mean daily intakes of digestible organic matter were 53·0, 58·1, 59·6 and 59·6 g/kgW0·73, for silages of increasing dry matter content. The corresponding ME intakes, expressed as a multiple of the ME requirement for maintenance, were 1·17, 1·29, 1·30 and 1·28. The percentage of acetic acid in the silage dry matter was significantly (r= −0·56) and linearly related to voluntary intake. The relationship between lactic acid concentration and voluntary intake was significantly curvilinear (r= 0·48).


1979 ◽  
Vol 29 (2) ◽  
pp. 163-173 ◽  
Author(s):  
K. Aston ◽  
S. R. Daley ◽  
J. C. Tayler

ABSTRACT1. Thirty lactating British Friesian heifers and cows were individually given maize silage ad libitum containing 331 g dry matter/kg, 13 g nitrogen and 11·2 MJ of metabolizable energy per kg dry matter. Urea or aqueous ammonia was mixed in at the time of feeding to give 7·0 g nitrogen per kg silage dry matter. Urea-treated silage was given with concentrates at a high (mean 6·6 kg dry matter/day: treatment HU) or a low (mean 3·3 kg:treatment LU) level of feeding; the lower level only was given with ammonia-treated silage (treatment LA).2. The addition of ammonia raised silage pH values from 3·9 to 4·4. Silage dry-matter intakes in lactation weeks 7 to 22 for treatments HU, LU and LA were 8·8, 11·1 and 10·7 kg/day.3. Digestible organic matter content in the dry matter of the diets measured in vivo was not significantly affected by treatment. However, digestible organic matter intakes were significantly greater for treatment HU than for LU in weeks 7 to 10, and for LU than for LA in weeks 11 to 22.4. The yields of milk and the contents of protein, lactose and energy did not differ between treatments. The milk yields for treatments HU, LU and LA in weeks 7 to 22 were 20·2,19·2, 18·8 kg/day respectively. Fat content of milk was significantly depressed with the HU treatment for heifers in weeks 7 to 10. The live-weight changes of the cows in weeks 7 to 22 for treatments HU, LU and LA were +0·10, −0·07 and −0·37 kg/day; the live-weight loss by cows given treatment LA was significantly greater than for LU. The live-weight change of the heifers was not affected by treatment.


1991 ◽  
Vol 52 (2) ◽  
pp. 271-278 ◽  
Author(s):  
P. V. Tan ◽  
M. J. Bryant

AbsstractThirty-six male and thirty-six female lambs (mean live weight 31·6 kg) were used to investigate the effect of fish-meal supplementation upon voluntary intake of NaOH-treated straw in a 3 × 3 factorial experiment with three levels of fish meal (0, 45 and 90 g/day) and three allowances of concentrate (57, 10·0 and 14·3 g/kg live weight) (experiment 1). The fish meal × concentrate allowance interaction was significant (P < 0·05) for straw dry matter (DM), total DM and metabolizable energy (ME) intake. Thus, as concentrate allowance increased, straw DM intake remained largely unchanged when fish meal was included in the diet whereas concentrate progressively substituted for straw DM intake when fish meal was not included in the diet. Increasing concentrate levels increased total DM intake linearly for all levels of fish meal but the rate of increase was positively associated with level of fish meal.In experiment 2, 24 castrated male lambs (mean live weight 40·7 kg) were used to measure apparent digestibilities and nitrogen (N) balance on four of the diets used in experiment 1. The overall effects of concentrate and fish-meal levels upon voluntary intake were similar to those found in experiment 1 but the interaction term was not significant either for intake or for the digestibility coefficients. Increasing fish-meal level increased apparent digestibility of DM, organic matter (OM) and aciddetergent fibre (ADF) (P < 0·01) while increasing concentrate allowance increased apparent digestibility of DM (P < 0·001) and OM (P < 0·01) but decreased that of ADF (F < 0·01). Nitrogen (N) retention was improved by the inclusion of fish meal in the diet (P < 0·001) and by high allowance of concentrate (P < 0·001).The voluntary intake response observed in experiment 1 could not be explained by the digestibility and N balance results obtained in experiment 2.


1974 ◽  
Vol 18 (1) ◽  
pp. 49-58 ◽  
Author(s):  
T. A. McCullough

SUMMARYComplete diets each containing (1) 0%, (2) 20%, (3) 40%, (4) 60% high-quality, (5) 20% and (6) 40% low-quality dried grass were given ad libitum to 48 British Friesian calves.The performance of the animals was studied over the stages of growth from 50 to 100 kg and 150 to 200 kg live weight. At each stage of growth the live-weight gain was similar on all treatments while the daily intake of dry matter was significantly affected by the treatments. Over the stage of growth from 50 to 100 kg live weight the intake of metabolizable energy was greatest on treatment 2 and lowest on treatment 4. The conversion ratio of metabolizable energy decreased with increasing levels and with both qualities of dried grass over the weight range 50 to 100 kg.When the calves reached 100 kg live weight, digestibility and N balance studies were carried out. The metabolizable energy (ME) expressed as a percentage of the gross energy decreased with increasing levels and with the lower quality of dried grass. Nitrogen retention was not significantly affected by treatment differences.The relationships of the voluntary intake of dry matter, ME intake and the conversion ratio of ME with the ME expressed as a percentage of gross energy over the lower live-weight range are also presented.


Author(s):  
Imēne Ben Salem ◽  
Mourad Rekik ◽  
Mohammed Ben Hamouda ◽  
Narjess Lassoued

The current study assessed the effect of the pattern of live weight change on the ovarian function of maiden Barbarine ewes at approximately 1 year of age. For this purpose, a total of 171 weaned ewe lambs (mean live weight  ± s.d. 34.7±3.07 kg and mean age ± SD 196±10 days at weaning) were selected for the experiment. Adjustment of live weight variation  was used. Based on the slope of the curve, animals were grouped into three classes LWCI (n=46),  LWCII (n=91) and LWCIII (n=34) with live weight loss being highest in LWCI and lowest in LWCIII.  Following laparoscopy at 13 months of age, the proportion of ewe lambs found cycling in LWCIII  (85.3%) was higher in comparison to animals in LWCI (43.4%; P<0.001) and tended to be superior to those in LWCII (61.5%; P<0.05). Following synchronisation with progestagen of the females found cycling, levels of plasma IGF-I concentrations between 6 and 42 hrs after removal of sponges were not significantly different between the three classes of live weight, and respectively averaged 94.2, 90.8 and 89.8 µg/l for LWCI, LWCII and LWCIII females. Levels of estradiol were also not significantly different between the three groups (0.73, 0.70 and 0.67 pg/ml for LWCI, LWCII and LWCIII ewe lambs, respectively). It was concluded that, in low input systems of semi-arid and arid Tunisia, mating ewe lambs at the approximate age of 1 year is likely to lead to depressed reproductive performance particularly when the summer live weight-loss is elevated. 


1990 ◽  
Vol 50 (3) ◽  
pp. 425-438 ◽  
Author(s):  
A. J. Rook ◽  
M. Gill

ABSTRACTData on individually recorded silage dry-matter intake (SDMI), concentrate dry-matter intake (CDMI) and live weight of steers and data on silage composition including toluene dry matter (TDM), pH, total nitrogen (N), ammonia nitrogen (NH3-N), volatile fatty acids (VFAs), digestible organic matter in the dry matter (DOMD) and neutral-detergent fibre (NDF) obtained from experiments conducted at three sites were used to obtain simple and multiple linear regressions of SDMI on other variables.Live weight accounted for a high proportion of the variation in intake but this effect could generally be removed by scaling intake by live weight raised to the power of 0·75 (M0·75). CDMI was the most important factor affecting scaled intake in mixed diets. TDM, NH,-N and VFAs all had important effects on SDMI. The relationship of SDMI with TDM was curvilinear suggesting that there is little to be gained in intake terms from wilting to TDM above 250 g/kg. The effect of NH3-N appeared to be related more to its correlation with VFAs than with any other nitrogenous constituent while the VFAs appeared to have a direct effect on SDMI. The effects of N and pH on SDMI were generally small. DOMD and NDF had relatively little effect on SDMI. Significant differences in intercepts between sites were found for most relationships although common slopes were often found.


1997 ◽  
Vol 65 (2) ◽  
pp. 305-310 ◽  
Author(s):  
J. R. Webster ◽  
I. D. Corsor ◽  
R. P. Littlejohn ◽  
J. M. Suttie

AbstractThe growth of male red deer slows during the first winter of life before increasing again during spring. This study aimed to determine if this period of slow growth could be minimized using artificial photoperiods during autumn and winter (10 April (week 1) to 11 September (week 23), southern hemisphere). Four groups of deer (no. = 10) were housed indoors as follows. Two groups were placed on a winter solstice photoperiod (8·5 light (L): 15·5 dark (D)) and given either a natural increase in photoperiod to 11·25L: 12·75D (WSN) or held on 8·5L: 15·5D for 7 weeks followed by an abrupt increase to 11·25L: 12·75D (WSH). One group was exposed to a summer solstice photoperiod of 16L: 8D (SS) and one group exposed to a natural photoperiodic pattern (IC). A fifth group of deer (no. = 10) was maintained outside on a gravelled enclosure under natural changes in photoperiod (OC). All groups were given a diet containing 160 g protein per kg and 11·0 MJ metabolizable energy per kg dry matter (DM) ad libitum. All animals were weighed weekly and group food intake recorded daily. Metatarsal length was measured at weeks 3,17 and 22 from the start of treatments.The major differences occurred between SS and the other groups. After a period of slower growth (weeks 1 to 5, SS = 88 g/day v. 168 g/day other groups, s.e.d. 31·2, P < 0·05), SS grew more rapidly from week 10 (P < 0·01). As a result, SS was heaviest from week 17 (P < 0·05) until the end of the experiment (P < 0·01). The mean growth rate of SS animals from weeks 10 to 23 was 346 g/day compared with 173 g/day (s.e.d. 15·3; P < 0·001) for the other groups. Over the whole experiment, SS animals gained 42·3 kg live weight, compared with 31·1 kg for WSN, 26·6 kg for WSH, 25·1 kg for OC and 23·7 kg for IC (s.e.d. 2·08 kg P < 0·01). The DM intake of SS from week 9 until the end of the experiment averaged 2·04 kg DM per head per day compared with 1·48 (s.e. 0·041) kg DM per head per day for the mean of the other groups. Metatarsal length increased more in SS than the other groups (P < 0·001) between weeks 3 and 17 and was longest in SS at weeks 17 and 22 (P < 0·01). Exposure to a 16L: 8D photoperiod during winter advanced the rapid growth of red deer calves normally associated with spring and summer. This response may be used to advance slaughter dates for venison production.


1986 ◽  
Vol 107 (2) ◽  
pp. 357-365 ◽  
Author(s):  
D. L. Coppock ◽  
D. M. Swift ◽  
J. E. Ellis ◽  
K. Galvin

SummaryEnergy budgets and estimates of forage intake requirements were developed for adult camels, cattle, sheep, and goats managed by nomads in the arid Turkana District of north-western Kenya. The estimates were developed by combining our field data on livestock activity patterns, diet quality, weight changes and milk yields with literature based estimates of the associated costs and efficiencies. On an annual basis, the average animal walked 17 km/day and had a total metabolizable energy (ME) allocation of 47% for basal metabolism, 16% for travel, 14% for other activities, and 23% for production. Season and species influenced patterns of energy demand and allocation. Average daily ME requirements ranged from 8·7 MJ (sheep) to 76·7 MJ (camels). ME demand for all species peaked during wet (April-May) or early-to mid-dry periods (June-October), and decreased considerably in the late-dry season (November-March). In the wet season the average sheep or goat allocated 45% of its ME budget to production of milk and gain, followed by cattle (36%) and camels (25%). All species were more similar in ME allocation for production during the late-dry season (7–13%; all to lactation), yet patterns of weight loss during this time indicated that camels experienced the lowest degree of negative energy balance. On an annual basis, camel budgets were the most deviant, as they allocated relatively more ME to activity and relatively less to basal metabolism or weight gain. Estimates of forage dry-matter intakes (per unit live weight per day) ranged from 3·8% (cattle, camels) to 4·6% (sheep, goats) throughout the year, and intakes declined for most species by an average of 50% from the wet to late-dry intervals. This approach has revealed ecological differences among livestock species that help explain the utility of multi-species holdings in this system.


Sign in / Sign up

Export Citation Format

Share Document