The impact of confocal microscopy in biomedical research

Author(s):  
William B. Amos

The confocal optical microscope, using laser illumination, has now gained widespread acceptance (see volume edited by Pawley) Its advantage in providing clear optical sections, particularly with fluorescent specimens, is well known. Of the many confocal instruments now in use in cell biology, the applications can be classified into five different categories.The chief use is to give three-dimensional information about conventionally prepared fluorescent specimens. A notable example is the in vivo mapping of an identified neurone through several days of embryonic life by O'Rourke, Scott Fraser and colleagues at Irvine, USA. There has also been much work on in situ hybridisation, morphometry of solid tumours, oncogene product localisation and many aspects of the cytoskeleton.The second use has been in reflection imaging of cell surface contacts, of isolated microtubules and microorganisms, of parts of the eye and of reaction products such as peroxidase.The third application is the measurement of intracellular parameters such as pH and calcium ion concentration within a defined volume.

Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1177
Author(s):  
Eve Hunter-Featherstone ◽  
Natalie Young ◽  
Kathryn Chamberlain ◽  
Pablo Cubillas ◽  
Ben Hulette ◽  
...  

Mechanotransduction is defined as the ability of cells to sense mechanical stimuli from their surroundings and translate them into biochemical signals. Epidermal keratinocytes respond to mechanical cues by altering their proliferation, migration, and differentiation. In vitro cell culture, however, utilises tissue culture plastic, which is significantly stiffer than the in vivo environment. Current epidermal models fail to consider the effects of culturing keratinocytes on plastic prior to setting up three-dimensional cultures, so the impact of this non-physiological exposure on epidermal assembly is largely overlooked. In this study, primary keratinocytes cultured on plastic were compared with those grown on 4, 8, and 50 kPa stiff biomimetic hydrogels that have similar mechanical properties to skin. Our data show that keratinocytes cultured on biomimetic hydrogels exhibited major changes in cellular architecture, cell density, nuclear biomechanics, and mechanoprotein expression, such as specific Linker of Nucleoskeleton and Cytoskeleton (LINC) complex constituents. Mechanical conditioning of keratinocytes on 50 kPa biomimetic hydrogels improved the thickness and organisation of 3D epidermal models. In summary, the current study demonstrates that the effects of extracellular mechanics on keratinocyte cell biology are significant and therefore should be harnessed in skin research to ensure the successful production of physiologically relevant skin models.


2019 ◽  
Vol 16 (1) ◽  
pp. 3-32 ◽  
Author(s):  
Gele Liu ◽  
Brian T. David ◽  
Matthew Trawczynski ◽  
Richard G. Fessler

AbstractOver the past 20 years, and particularly in the last decade, significant developmental milestones have driven basic, translational, and clinical advances in the field of stem cell and regenerative medicine. In this article, we provide a systemic overview of the major recent discoveries in this exciting and rapidly developing field. We begin by discussing experimental advances in the generation and differentiation of pluripotent stem cells (PSCs), next moving to the maintenance of stem cells in different culture types, and finishing with a discussion of three-dimensional (3D) cell technology and future stem cell applications. Specifically, we highlight the following crucial domains: 1) sources of pluripotent cells; 2) next-generation in vivo direct reprogramming technology; 3) cell types derived from PSCs and the influence of genetic memory; 4) induction of pluripotency with genomic modifications; 5) construction of vectors with reprogramming factor combinations; 6) enhancing pluripotency with small molecules and genetic signaling pathways; 7) induction of cell reprogramming by RNA signaling; 8) induction and enhancement of pluripotency with chemicals; 9) maintenance of pluripotency and genomic stability in induced pluripotent stem cells (iPSCs); 10) feeder-free and xenon-free culture environments; 11) biomaterial applications in stem cell biology; 12) three-dimensional (3D) cell technology; 13) 3D bioprinting; 14) downstream stem cell applications; and 15) current ethical issues in stem cell and regenerative medicine. This review, encompassing the fundamental concepts of regenerative medicine, is intended to provide a comprehensive portrait of important progress in stem cell research and development. Innovative technologies and real-world applications are emphasized for readers interested in the exciting, promising, and challenging field of stem cells and those seeking guidance in planning future research direction.


2016 ◽  
Vol 44 (4) ◽  
pp. 1005-1010 ◽  
Author(s):  
Charlotte M. Thomas ◽  
David J. Timson

There is a family of proteins from parasitic worms which combine N-terminal EF-hand domains with C-terminal dynein light chain-like domains. Data are accumulating on the biochemistry and cell biology of these proteins. However, little is known about their functions in vivo. Schistosoma mansoni expresses 13 family members (SmTAL1–SmTAL13). Three of these (SmTAL1, SmTAL2 and SmTAL3) have been subjected to biochemical analysis which demonstrated that they have different molecular properties. Although their overall folds are predicted to be similar, small changes in the EF-hand domains result in differences in their ion binding properties. Whereas SmTAL1 and SmTAL2 are able to bind calcium (and some other) ions, SmTAL3 appears to be unable to bind any divalent cations. Similar biochemical diversity has been seen in the CaBP proteins from Fasciola hepatica. Four family members are known (FhCaBP1–4). All of these bind to calcium ions. However, FhCaBP4 dimerizes in the presence of calcium ions, FhCaBP3 dimerizes in the absence of calcium ions and FhCaBP2 dimerizes regardless of the prevailing calcium ion concentration. In both the SmTAL and FhCaBP families, the proteins also differ in their ability to bind calmodulin antagonists and related drugs. Interestingly, SmTAL1 interacts with praziquantel (the drug of choice for treating schistosomiasis). The pharmacological significance (if any) of this finding is unknown.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 886-886
Author(s):  
Ganqian Zhu ◽  
Huacheng Luo ◽  
Shi Chen ◽  
Qian Lai ◽  
Ying Guo ◽  
...  

Abstract Aberrant expression of long non-coding RNAs (lncRNAs) might contribute to the development and progression of leukemia. However, functional studies on the actual role of lncRNAs during the development of leukemia remain scarce, and very few lncRNAs have been shown to be involved in leukemogenesis. HoxBlinc is an anterior HoxB gene-associated intergenic lncRNA. It is a cis-acting lncRNA and functions as an epigenetic regulator to coordinate anterior HoxB gene expression. Giving the dysregulation of HOXA/B genes is a dominant mechanism of leukemic transformation, HoxBlinc might be an oncogenic lncRNA of leukemia. To determine whether HOXBLINC lncRNA is aberrantly expressed in human AML samples, we performed RT-qPCR on bone marrow mononuclear cells (BMMNCs) from a cohort of 73 AML patients. A dramatic up-regulation of HOXBLINC was observed in over 60% of the patients. When TCGA-AML datasets of a cohort of 179 AML patients were analyzed for their HOXBLINC expression, a significant portion of these AML patients had high levels of HOXBLINC expression. Interestingly, AML patients with high HOXBLINC expression (the top thirty percentile of patients) had a significantly shortened survival as compared to patients with low HOXBLINC expression (the bottom thirty percentile). To investigate the impact of HoxBlinc overexpression on normal hematopoiesis and the pathogenesis of hematological malignancies in vivo, we generated a HoxBlinc transgenic(Tg) mouse model. Within 1 year of age, 67% of the HoxBlincTg mice (10 of 15) died or were sacrificed because of a moribund condition due to AML. We then assessed whether overexpression of HoxBlinc affects the pools of HSC/HPCs by flow cytometric analysis on the BM cells of young WT and HoxBlincTg mice (8-10 weeks of age). HoxBlincTg BM had a dramatically greater number of LT-HSC, ST-HSC, MPP cells, and a significantly higher percentage of GMP, but a lower percentage of MEP/CMP cell populations as compared to WT group. To determine the effect of HoxBlinc overexpression on the function of HSC/HPCs, we performed paired-daughter cell assay, replating assay and liquid culture on sorted LT-HSC, LSK or LK cells from young WT and HoxBlincTg mice, the results indicate that transgenic expression of HoxBlinc enhances HSC self-renewal and impairs HSC/HPC differentiation. To assess whether HoxBlinc overexpression-mediated changes in HSC/HPC function are cell-autonomous, we performed competitive transplantation assays to examine the repopulating capacity of HoxBlincTg BM cells. When the donor cell chimerism was analyzed kinetically in the PB of recipient mice, the CD45.2 cell population remained ~50% in mice receiving WT BM cells, whereas the CD45.2 chimerism in the recipients transplanted with HoxBlincTg BM cells steadily increased. Interestingly, mice receiving HoxBlincTg BM cells developed AML at 2-6 months after transplantation. Previous data reported that HoxBlinc can recruit the Setd1a/Mll1 histone H3K4 methyltransferase complex to mediate formation of the active topologically associated domain (TAD) in the anterior HoxB locus for transcription of the anterior HoxB genes. In this study, LSK or LK cells sorted from young WT and HoxBlincTg mice were analyzed by RNA-seq, ATAC-seq, H3K4me3 CHIP-seq and 4C analysis. Mechanistically, HoxBlinc overexpression alters HoxB locus chromatin three-dimensional organization to enhance enhancer/promoter chromatin accessibility and coordinate the expression of not only HoxB1-5 but also HoxA9, Runx1, Meis1 and so on, which are critical genes for HSC regulation and/or leukemogenesis. Our study provides novel insights into the HSC regulation by lncRNAs and identifies HOXBLINC, which coordinates to maintain an oncogenic transcription program for leukemic transformation, as a potent oncogenic lncRNA in leukemogenesis. Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Vol 7 (3) ◽  
pp. 8-13
Author(s):  
Luz Marina Cano Molano ◽  
Sandra Isabel Enciso Galindo ◽  
Jaime Andrés Gutiérrez Quintero ◽  
Martha Osorio de Sarmiento

RESUMENIntroducción: Los procesos de enseñanza aprendizaje de las ciencias básicas tienen diferentes estrategias didácticas que permiten el desarrollo de las competencias de las asignaturas para la formación médica. Con el estudio teórico toda la tarea recae sobre la memoria y la imaginación, al contrario de lo que sucede si el trabajo se realiza de forma activa y las diferentes actividades realizadas requieren de todas las habilidades y sentidos. Objetivos: Evaluar el desempeño académico del estudiante cuando construye y sustenta un modelo tridimensional en las áreas de Biología Celular y Morfofisiología correlacionándolo con el examen oral. Métodos: Se realizó una encuesta de percepción estudiantil y se comparó con un t-student que permitió evaluar el impacto de la modelización en el rendimiento académico de los estudiantes. Resultados: La mediana del modelo fue de 3.38 y la mediana del examen oral fue de 3.75; existiendo una correlación del 84% entre la nota del modelo y el examen oral, con un coeficiente correlación de Pearson 0.85 con una p=0.000, estadísticamente significativa. Conclusión: La actividad académica de construcción de modelos tridimensionales en las áreas de Biología Celular y Morfofisiología para el desarrollo de la compresión de estructuras complejas mejora la capacidad de integración y argumentación de los contenidos de estas asignaturas.Palabras-Clave: Modelización; Ciencias básicas; Proceso enseñanza-aprendizajeABSTRACTIntroduction: The learning processes of the basic sciences have different teaching strategies that allow the development of the competences of the subjects for the training of practioners. With the theoreti-cal study, the whole task falls on memory and imagination, unlike what happens if the work is done in an active way and the different activities performed require all the skills and senses. Aims: To evaluate the student's academic performance when constructing and sustaining a three-dimensional model in the areas of Cell Biology and Morphology and correlate these with the oral exam. Methods: A student perception survey was conducted and compared with the one of a T-student that allowed the evaluation of the impact of the modelling on students' academic per-formance. Results: The average of the model was 3.38 and the average of the oral test was 3.75. There was a correlation of 84% between the model note and the oral test, with a correlation coefficient of Pear-son of 0.85 with a statistical significance p=0.000. Conclusion: The academic activi-ty of construction of three-dimensional models in the areas of Cellular Biology and Morphology for the development of the compression of complex structures im-proves the capacity of integration and argumentation of the contents of these subjects.Keywords: Modeling; Basic sciences; Teaching-learning process


2021 ◽  
Vol 6 ◽  
pp. 44
Author(s):  
Róbert Zach ◽  
Antony M. Carr

Background: In vitro experiments utilising the reconstituted Saccharomyces cerevisiae eukaryotic replisome indicated that the efficiency of the leading strand replication is impaired by a moderate increase in Polδ concentration. It was hypothesised that the slower rate of the leading strand synthesis characteristic for reactions containing two-fold and four-fold increased concentration of Polδ represented a consequence of a relatively rare event, during which Polδ stochastically outcompeted Polε and, in an inefficient manner, temporarily facilitated extension of the leading strand. Inspired by this observation, we aimed to determine whether similarly increased Polδ levels influence replication dynamics in vivo using the fission yeast Schizosaccharomyces pombe as a model system. Methods: To generate S. pombe strains over-expressing Polδ, we utilised Cre-Lox mediated cassette exchange and integrated one or three extra genomic copies of all four Polδ genes. To estimate expression of respective Polδ genes in Polδ-overexpressing mutants, we measured relative transcript levels of cdc1+, cdc6+ (or cdc6L591G), cdc27+ and cdm1+ by reverse transcription followed by quantitative PCR (RT-qPCR). To assess the impact of Polδ over-expression on cell physiology and replication dynamics, we used standard cell biology techniques and polymerase usage sequencing. Results: We provide an evidence that two-fold and four-fold over-production of Polδ does not significantly alter growth rate, cellular morphology and S-phase duration. Polymerase usage sequencing analysis further indicates that increased Polδ expression does not change activities of Polδ, Polε and Polα at replication initiation sites and across replication termination zones. Additionally, we show that mutants over-expressing Polδ preserve WT-like distribution of replication origin efficiencies. Conclusions: Our experiments do not disprove the existence of opportunistic polymerase switches; however, the data indicate that, if stochastic replacement of Polε for Polδ does occur in vivo, it represents a rare phenomenon that does not significantly influence canonical replication program.


2021 ◽  
Vol 11 (4) ◽  
pp. 1791
Author(s):  
Pablo Rougerie ◽  
Rafaela Silva dos Santos ◽  
Marcos Farina ◽  
Karine Anselme

Bone is a specialized tissue formed by different cell types and a multiscale, complex mineralized matrix. The architecture and the surface chemistry of this microenvironment can be factors of considerable influence on cell biology, and can affect cell proliferation, commitment to differentiation, gene expression, matrix production and/or composition. It has been shown that osteoblasts encounter natural motifs in vivo, with various topographies (shapes, sizes, organization), and that cell cultures on flat surfaces do not reflect the total potential of the tissue. Therefore, studies investigating the role of topographies on cell behavior are important in order to better understand the interaction between cells and surfaces, to improve osseointegration processes in vivo between tissues and biomaterials, and to find a better topographic surface to enhance bone repair. In this review, we evaluate the main available data about surface topographies, techniques for topographies’ production, mechanical signal transduction from surfaces to cells and the impact of cell–surface interactions on osteoblasts or preosteoblasts’ behavior.


1981 ◽  
Vol 90 (1) ◽  
pp. 25-31 ◽  
Author(s):  
C Moos

The binding of extra C protein to rabbit skeletal muscle myofibrils has been investigated by fluorescence microscopy with fluorescein-labeled C protein or unmodified C protein plus fluorescein-labeled anti-C protein. Added C protein binds strongly to the I bands, which is consistent with its binding to F actin in solution (Moos, C., C. M. Mason, J. M. Besterman, I. M. Feng, and J. H. Dubin. 1978. J. Mol. Biol. 124:571-586). Of particular interest, the binding to the I band is calcium regulated: it requires a free calcium ion concentration comparable to that which activates the myofibrillar ATPase. This increases the likelihood that C protein-actin interaction might be physiologically significant. When I band binding is suppressed, binding in the A band becomes evident. It appears to occur particularly near the M line, and possibly at the edges of the A band as well, suggesting that those parts of the thick filaments that lack C protein in vivo may nevertheless be capable of binding added C protein.


Author(s):  
Ryo Takagi ◽  
Ayaka Tabuchi ◽  
Tomoyo Asamura ◽  
Seiya Hirayama ◽  
Ryo Ikegami ◽  
...  

The effect of cooling on in vivo intracellular calcium ion concentration ([Ca2+]i) after eccentric contractions (ECs) remains to be determined. We tested the hypothesis that cryotherapy following ECs promotes an increased [Ca2+]i and induces greater muscle damage in two muscles with substantial IIb and IIx fiber populations. The thin spinotrapezius (SPINO) muscles of Wistar rats were used for in vivo [Ca2+]i imaging and tibialis anterior (TA) muscles provided greater fidelity and repeatability of contractile function measurements. SPINO [Ca2+]i was estimated using fura 2-AM and the magnitude, location and temporal profile of [Ca2+]i determined as the temperature near the muscle surface post-ECs was decreased from 30oC (control) to 20oC or 10oC. Subsequently, in the TA the effect of post-ECs cooling to 10oC on muscle contractile performance was determined at 1 and 2 days after ECs. TA muscle samples were examined by hematoxylin and eosin staining to assess damage. In SPINO reducing the muscle temperature from 30oC to 10oC post-ECs resulted in a 3.7-fold increase in the spread of high [Ca2+]i sites generated by ECs (P<0.05). These high [Ca2+]i sites demonstrated partial reversibility when rewarmed to 30oC. Dantrolene, a ryanodine receptor Ca2+ release inhibitor, reduced the presence of high [Ca2+] sites at 10oC. In the TA cooling exacerbated ECs-induced muscle strength deficits post-ECs via enhanced muscle fiber damage (P<0.05). By demonstrating that cooling post-ECs potentiates [Ca2+]i derangements, this in vivo approach supports a putative mechanistic basis for how post-exercise cryotherapy might augment muscle fiber damage and decrease subsequent exercise performance.


2021 ◽  
Vol 22 (2) ◽  
pp. 830
Author(s):  
Georgia Pennarossa ◽  
Sharon Arcuri ◽  
Teresina De Iorio ◽  
Fulvio Gandolfi ◽  
Tiziana A. L. Brevini

Bi-dimensional culture systems have represented the most used method to study cell biology outside the body for over a century. Although they convey useful information, such systems may lose tissue-specific architecture, biomechanical effectors, and biochemical cues deriving from the native extracellular matrix, with significant alterations in several cellular functions and processes. Notably, the introduction of three-dimensional (3D) platforms that are able to re-create in vitro the structures of the native tissue, have overcome some of these issues, since they better mimic the in vivo milieu and reduce the gap between the cell culture ambient and the tissue environment. 3D culture systems are currently used in a broad range of studies, from cancer and stem cell biology, to drug testing and discovery. Here, we describe the mechanisms used by cells to perceive and respond to biomechanical cues and the main signaling pathways involved. We provide an overall perspective of the most recent 3D technologies. Given the breadth of the subject, we concentrate on the use of hydrogels, bioreactors, 3D printing and bioprinting, nanofiber-based scaffolds, and preparation of a decellularized bio-matrix. In addition, we report the possibility to combine the use of 3D cultures with functionalized nanoparticles to obtain highly predictive in vitro models for use in the nanomedicine field.


Sign in / Sign up

Export Citation Format

Share Document