scholarly journals Bioactivity of vitamin E

2006 ◽  
Vol 19 (2) ◽  
pp. 174-186 ◽  
Author(s):  
Regina Brigelius-Flohé

More than 80 years after the discovery of the essentiality of vitamin E for mammals, the molecular basis of its action is still an enigma. From the eight different forms of vitamin E, only α-tocopherol is retained in the body. This is in part due to the specific selection of RRR-α-tocopherol by the α-tocopherol transfer protein and in part by its low rate of degradation and elimination compared with the other vitamers. Since the tocopherols have comparable antioxidant properties and some tocotrienols are even more effective in scavenging radicals, the antioxidant capacity cannot be the explanation for its essentiality, at least not the only one. In the last decade, a high number of so-called novel functions of almost all forms of vitamin E have been described, including regulation of cellular signalling and gene expression. α-Tocopherol appears to be most involved in gene regulation, whereas γ-tocopherol appears to be highly effective in preventing cancer-related processes. Tocotrienols appear to be effective in amelioration of neurodegeneration. Most of the novel functions of individual forms of vitamin E have been demonstrated in vitro only and require in vivo confirmation. The distinct bioactivities of the various vitamers are discussed, considering their metabolism and the potential functions of metabolites.

2009 ◽  
Vol 15 (3) ◽  
pp. 898-906 ◽  
Author(s):  
Jing Ni ◽  
Tiejun Mai ◽  
See-Tong Pang ◽  
Imranul Haque ◽  
Kaohsing Huang ◽  
...  

2021 ◽  
pp. 1-33
Author(s):  
Ayami Sato ◽  
Yuka Takino ◽  
Tomohiro Yano ◽  
Koji Fukui ◽  
Akihito Ishigami

Abstract Vitamin E (α-tocopherol; VE) is known to be regenerated from VE radicals by vitamin C (L-ascorbic acid; VC) in vitro. However, their in vivo interaction in various tissues is still unclear. Therefore, we alternatively examined the in vivo interaction of VC and VE by measurement of their concentrations in various tissues of senescence marker protein-30 (SMP30) knockout (KO) mice as a VC synthesis deficiency model. Male SMP30-KO mice were divided into four groups (VC+/VE+, VC+/VE-, VC-/VE+, and VC-/VE-), fed diets with or without 500 mg/kg VE and given water with or without 1.5 g/L VC ad libitum. Then, VC and VE concentrations in the plasma and various tissues were determined. Further, gene expression levels of transporters associated with VC and VE, such as α-tocopherol transfer protein (α-TTP) and sodium-dependent vitamin C transporters (SVCTs), were examined. These results showed that the VE levels in the VC-depleted (VC-/VE+) group were significantly lower than those in the VC+/VE+ group in the liver and heart; the VC levels in the VE-depleted (VC+/VE-) group were significantly lower than those in the VC+/VE+ group in the kidneys. The α-TTP gene expression in the liver and kidneys were decreased by VC and/or VE depletion. Moreover, SVCT1 gene expression in the liver was decreased by both VC and VE depletion. In conclusion, these results indicate that VC spares VE mainly in the liver and heart, and that VE spares VC in the kidneys of SMP30-KO mice. Thus, interaction between VC and VE is likely to be tissue specific.


2021 ◽  
Vol 11 (8) ◽  
pp. 1098
Author(s):  
Maria Ester La Torre ◽  
Ines Villano ◽  
Marcellino Monda ◽  
Antonietta Messina ◽  
Giuseppe Cibelli ◽  
...  

Microglia are the first line of defense at the level of the central nervous system (CNS). Phenotypic change in microglia can be regulated by various factors, including the orexin system. Neuroinflammation is an inflammatory process mediated by cytokines, by the lack of interaction of specific receptors such as the OX2-OX2R complex, caused by systemic tissue damage or, more often, associated with direct damage to the CNS. Chronic activation of microglia could lead to long-term neurodegenerative diseases. This review aims to explore how tocopherol (vitamin E) and the orexin system may play a role in the prevention and treatment of microglia inflammation and, consequently, in neurodegenerative diseases thanks to its antioxidant properties. The results of animal and in vitro studies provide evidence to support the use of tocopherol for a reduction in microglia inflammation as well as a greater activation of the orexinergic system. Although there is much in vivo and in vitro evidence of vitamin E antioxidant and protective abilities, there are still conflicting results for its use as a treatment for neurodegenerative diseases that speculate that vitamin E, under certain conditions or genetic predispositions, can be pro-oxidant and harmful.


2000 ◽  
Vol 66 (3) ◽  
pp. 1216-1219 ◽  
Author(s):  
Hesta V. McNeill ◽  
Katharine A. Sinha ◽  
Carlos E. Hormaeche ◽  
Jeong Jin Lee ◽  
C. M. Anjam Khan

ABSTRACT We report the novel application of a herbicide-resistance-based dominant marker for the positive selection of expression plasmids inSalmonella serovar vaccines. The β-lactamase gene of the plasmid pTETnir15, which expresses fragment C of tetanus toxin (TetC), has been replaced with the bar gene marker. The new plasmid pBAT1 can be positively selected in vitro within Salmonellaserovars in the presence of the herbicidedl-phosphinothricin. The expression of TetC remains unaltered, and the Salmonella enterica serovar Typhimurium vaccine strain is stable and immunogenic in vivo.


Metabolites ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 69
Author(s):  
Mahesh Raj Nepal ◽  
Ki Sun Jeong ◽  
Geon Ho Kim ◽  
Dong Ho Cha ◽  
Mi Jeong Kang ◽  
...  

Alteration in the number and composition of intestinal microbiota affects the metabolism of several xenobiotics. Gastrodin, isolated from Gastrodia elata, is prone to be hydrolyzed by intestinal microbiota. In the present study, the role of intestinal microbiota in gastrodin metabolism was investigated in vitro and in vivo. Gastrodin was incubated in an anaerobic condition with intestinal contents prepared from vehicle- and antibiotics-treated rats and the disappearance of gastrodin and formation of 4-hydroxybenzyl alcohol (4-HBA) was measured by liquid chromatography coupled to mass spectroscopy (LC-MS/MS). The results showed that almost all gastrodin incubated with control intestinal contents was metabolized to its aglycone in time- and concentration-dependent manners. In contrast, much less formation of 4-HBA was detected in intestinal contents from antibiotics-treated rats. Subsequently, in vivo pharmacokinetic study revealed that the antibiotic pretreatment of rats significantly affected the metabolism of gastrodin to 4-HBA. When administered orally, gastrodin was rapidly absorbed rapidly into plasma, metabolized to 4-HBA, and disappeared from the body within six hours. Interestingly, the pharmacokinetic parameters of 4-HBA were changed remarkably in antibiotics-treated rats, compared to control rats. The results clearly indicated that the antibiotics treatment of rats suppressed the ability of intestinal microbiota to metabolize gastrodin to 4-HBA and that, thereby, the pharmacodynamic action was significantly modulated.


2020 ◽  
Vol 9 ◽  
Author(s):  
Janete Rocha ◽  
Nuno Borges ◽  
Olívia Pinho

Abstract Table olives, a product of olive tree (Olea europaea L.), is an important fermented product of the Mediterranean Diet. Agronomical factors, particularly the cultivar, the ripening stage and the processing method employed are the main factors influencing the nutritional and non-nutritional composition of table olives and their organoleptic properties. The important nutritional value of this product is due to its richness in monounsaturated fat (MUFA), mainly oleic acid, fibre and vitamin E together with the presence of several phytochemicals. Among these, hydroxytyrosol (HT) is the major phenolic compound present in all types of table olives. There is a scarcity of in vitro, in vivo and human studies of table olives. This review focused comprehensively on the nutrients and bioactive compound content as well as the health benefits assigned to table olives. The possible health benefits associated with their consumption are thought to be primarily related to effects of MUFA on cardiovascular health, the antioxidant (AO) capacity of vitamin E and its role in protecting the body from oxidative damage and the anti-inflammatory and AO activities of HT. The influence of multiple factors on composition of the end product and the potential innovation in the production of table olives through the reduction of its final salt content was also discussed.


2021 ◽  
Vol 9 (1) ◽  
pp. 1-7
Author(s):  
Ramen Kalita ◽  
Kunal Bhattacharya ◽  
Amir Ali ◽  
Satyasish Sandilya

Antioxidants are substances that can prevent cells from the damage caused by unstable molecules such as free radicals. Quercetin, a plant pigment present in many fruits, vegetables, grains, and one of the most beneficial antioxidants in the diet and plays an important role in helping the body and prevent free radical damage, which is linked to chronic diseases. The antioxidant properties of quercetin may help to reduce inflammation, allergy symptoms, blood pressure. A lot of studies have been done and experiments have been conducted both in vivo and in vitro and it has been found that in cultured cells many respiratory viruses were inhibited by quercetin. At a minimal inhibitory concentration of 0.03 to 0.5μg/ml in WI-38 or Hela cells, Cytopathic effects produced by echovirus type 7,11,12,19, rhinovirus, poliovirus, and coxsackievirus A21 and B1 were inhibited. The plaque formed by DNA and RNA viruses such as Herpes Simplex Virus-1, Polio type 1, and parainfluenza types 3 were effectively reduced demonstrating its anti-replicative properties. This article reviews effect of quercetin on different types of viral infections.


2021 ◽  
Vol 15 (4) ◽  
pp. 223-232
Author(s):  
Farnoosh Kaviani ◽  
◽  
Missagh Jalali ◽  
Elham Hoveizi ◽  
Javad Jamshidian ◽  
...  

Background: The protective effects of Montelukast (Mont), as an anti-inflammatory drug, against cadmium-induced kidney cell damage have already been studied and identified. Since the significant part of cadmium nephrotoxicity is caused by oxidative stress, this in vivo and in vitro study was conducted to investigate the possible role of Montelukast antioxidant properties in the protection. Methods: In the in vivo section, 42 rats were treated in seven groups of six rats as follows: Control; Cadmium Chloride (CdCl2) control; Montelukast control; CdCl2 plus Montelukast treatment; CdCl2 with Montelukast pre-treatment; Vitamin E control; CdCl2 plus Vitamin E treatment. In the in vitro section, human embryonic kidney cells (HEK293) were treated with CdCl2; Montelukast; Combined CdCl2 and Montelukast; Vitamin E; Combined CdCl2 and Vitamin E. Results: Montelukast, in both treatment and pretreatment forms, reduced serum urea, creatinine, and potassium levels compared to CdCl2 group, in vivo. Similar to vitamin E, the pre-treatment with Montelukast was associated with a significant decrease in Nitric Oxide (NO) and Total Antioxidant Capacity (TAC) in serum and renal tissue, and a significant increase in Glutathione Peroxidase (GPX) activity in serum compared those in the CdCl2 group. In the in vitro section of the study, Montelukast significantly reduced Malondialdehyde (MDA) and NO while the TAC level, Superoxide Dismutase (SOD), and the GPX activity increased significantly. Conclusion: Overall, the antioxidant effects of Montelukast appear to play a prominent role in preventing the renal toxicity due to cadmium exposure.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Shy Cian Khor ◽  
Norwahidah Abdul Karim ◽  
Wan Zurinah Wan Ngah ◽  
Yasmin Anum Mohd Yusof ◽  
Suzana Makpol

Sarcopenia is a geriatric syndrome that is characterized by gradual loss of muscle mass and strength with increasing age. Although the underlying mechanism is still unknown, the contribution of increased oxidative stress in advanced age has been recognized as one of the risk factors of sarcopenia. Thus, eliminating reactive oxygen species (ROS) can be a strategy to combat sarcopenia. In this review, we discuss the potential role of vitamin E in the prevention and treatment of sarcopenia. Vitamin E is a lipid soluble vitamin, with potent antioxidant properties and current evidence suggesting a role in the modulation of signaling pathways. Previous studies have shown its possible beneficial effects on aging and age-related diseases. Although there are evidences suggesting an association between vitamin E and muscle health, they are still inconclusive compared to other more extensively studied chronic diseases such as neurodegenerative diseases and cardiovascular diseases. Therefore, we reviewed the role of vitamin E and its potential protective mechanisms on muscle health based on previous and currentin vitroandin vivostudies.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 909
Author(s):  
Daniel Muñoz-Reyes ◽  
Ana I. Morales ◽  
Marta Prieto

Quercetin is a flavonoid with antioxidant, antiviral, antimicrobial, and anti-inflammatory properties. Therefore, it has been postulated as a molecule with great therapeutic potential. The renoprotective capacity of quercetin against various toxins that produce oxidative stress, in both in vivo and in vitro models, has been shown. However, it is not clear whether quercetin itself or any of its metabolites are responsible for the protective effects on the kidney. Although the pharmacokinetics of quercetin have been widely studied and the complexity of its transit throughout the body is well known, the metabolic processes that occur in the kidney are less known. Because of that, the objective of this review was to delve into the molecular and cellular events triggered by quercetin and/or its metabolites in the tubular cells, which could explain some of the protective properties of this flavonoid against oxidative stress produced by toxin administration. Thus, the following are analyzed: (1) the transit of quercetin to the kidney; (2) the uptake mechanisms of quercetin and its metabolites from plasma to the tubular cells; (3) the metabolic processes triggered in those cells, which affect the accumulation of metabolites in the intracellular space; and (4) the efflux mechanisms of these compounds and their subsequent elimination through urine. Finally, it is discussed whether those processes that are mediated in the tubular cells and that give rise to different metabolites are related to the antioxidant and renoprotective properties observed after the administration of quercetin.


Sign in / Sign up

Export Citation Format

Share Document