scholarly journals Role of Vitamin E and the Orexin System in Neuroprotection

2021 ◽  
Vol 11 (8) ◽  
pp. 1098
Author(s):  
Maria Ester La Torre ◽  
Ines Villano ◽  
Marcellino Monda ◽  
Antonietta Messina ◽  
Giuseppe Cibelli ◽  
...  

Microglia are the first line of defense at the level of the central nervous system (CNS). Phenotypic change in microglia can be regulated by various factors, including the orexin system. Neuroinflammation is an inflammatory process mediated by cytokines, by the lack of interaction of specific receptors such as the OX2-OX2R complex, caused by systemic tissue damage or, more often, associated with direct damage to the CNS. Chronic activation of microglia could lead to long-term neurodegenerative diseases. This review aims to explore how tocopherol (vitamin E) and the orexin system may play a role in the prevention and treatment of microglia inflammation and, consequently, in neurodegenerative diseases thanks to its antioxidant properties. The results of animal and in vitro studies provide evidence to support the use of tocopherol for a reduction in microglia inflammation as well as a greater activation of the orexinergic system. Although there is much in vivo and in vitro evidence of vitamin E antioxidant and protective abilities, there are still conflicting results for its use as a treatment for neurodegenerative diseases that speculate that vitamin E, under certain conditions or genetic predispositions, can be pro-oxidant and harmful.

2019 ◽  
Vol 19 (2) ◽  
pp. 75-99 ◽  
Author(s):  
Nayana Keyla Seabra de Oliveira ◽  
Marcos Rafael Silva Almeida ◽  
Franco Márcio Maciel Pontes ◽  
Mariana Pegrucci Barcelos ◽  
Carlos Henrique Tomich de Paula da Silva ◽  
...  

Introduction:Neurodegenerative diseases (NDDs) are progressive, directly affecting the central nervous system (CNS), the most common and recurrent are Alzheimer's disease (AD) and Parkinson's disease (PD). One factor frequently mentioned in the etiology of NDDs is the generation of free radicals and oxidative stress, producing cellular damages. Studies have shown that the consumption of foods rich in polyphenols, especially those of the flavonoid class, has been related to the low risk in the development of several diseases. Due to the antioxidant properties present in the food, a fruit that has been gaining prominence among these foods is the Euterpe oleracea Mart. (açaí), because it presents in its composition significant amounts of a subclass of the flavonoids, the anthocyanins.Methods:In the case review, the authors receive a basic background on the most common NDDs, oxidative stress and antioxidants. In addition, revisiting the various studies related to NDDs, including flavonoids and consumption of açaí.Results:Detailed analysis of the recently reported case studies reveal that dietary consumption of flavonoid-rich foods, such as açaí fruits, suggests the efficacy to attenuate neurodegeneration and prevent or reverse the age-dependent deterioration of cognitive function.Conclusion:This systematic review points out that flavonoids presenting in açaí have the potential for the treatment of diseases such as PD and AD and are candidates for drugs in future clinical research. However, there is a need for in vitro and in vivo studies with polyphenol that prove and ratify the therapeutic potential of this fruit for several NDDs.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Shy Cian Khor ◽  
Norwahidah Abdul Karim ◽  
Wan Zurinah Wan Ngah ◽  
Yasmin Anum Mohd Yusof ◽  
Suzana Makpol

Sarcopenia is a geriatric syndrome that is characterized by gradual loss of muscle mass and strength with increasing age. Although the underlying mechanism is still unknown, the contribution of increased oxidative stress in advanced age has been recognized as one of the risk factors of sarcopenia. Thus, eliminating reactive oxygen species (ROS) can be a strategy to combat sarcopenia. In this review, we discuss the potential role of vitamin E in the prevention and treatment of sarcopenia. Vitamin E is a lipid soluble vitamin, with potent antioxidant properties and current evidence suggesting a role in the modulation of signaling pathways. Previous studies have shown its possible beneficial effects on aging and age-related diseases. Although there are evidences suggesting an association between vitamin E and muscle health, they are still inconclusive compared to other more extensively studied chronic diseases such as neurodegenerative diseases and cardiovascular diseases. Therefore, we reviewed the role of vitamin E and its potential protective mechanisms on muscle health based on previous and currentin vitroandin vivostudies.


2018 ◽  
Vol 8 (3) ◽  
pp. 36-41
Author(s):  
Diep Do Thi Hong ◽  
Duong Le Phuoc ◽  
Hoai Nguyen Thi ◽  
Serra Pier Andrea ◽  
Rocchitta Gaia

Background: The first biosensor was constructed more than fifty years ago. It was composed of the biorecognition element and transducer. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples Glutamate is important biochemicals involved in energetic metabolism and neurotransmission. Therefore, biosensors requires the development a new approach exhibiting high sensibility, good reproducibility and longterm stability. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples. The aims of this work: To find out which concentration of polyethylenimine (PEI) exhibiting the most high sensibility, good reproducibility and long-term stability. Methods: We designed and developed glutamate biosensor using different concentration of PEI ranging from 0% to 5% at Day 1 and Day 8. Results: After Glutamate biosensors in-vitro characterization, several PEI concentrations, ranging from 0.5% to 1% seem to be the best in terms of VMAX, the KM; while PEI content ranging from 0.5% to 1% resulted stable, PEI 1% displayed an excellent stability. Conclusions: In the result, PEI 1% perfomed high sensibility, good stability and blocking interference. Furthermore, we expect to develop and characterize an implantable biosensor capable of detecting glutamate, glucose in vivo. Key words: Glutamate biosensors, PEi (Polyethylenimine) enhances glutamate oxidase, glutamate oxidase biosensors


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1024
Author(s):  
Sebastien Dupont ◽  
Paul Fleurat-Lessard ◽  
Richtier Gonçalves Cruz ◽  
Céline Lafarge ◽  
Cédric Grangeteau ◽  
...  

Although the functions and structural roles of sterols have been the subject of numerous studies, the reasons for the diversity of sterols in the different eukaryotic kingdoms remain unclear. It is thought that the specificity of sterols is linked to unidentified supplementary functions that could enable organisms to be better adapted to their environment. Ergosterol is accumulated by late branching fungi that encounter oxidative perturbations in their interfacial habitats. Here, we investigated the antioxidant properties of ergosterol using in vivo, in vitro, and in silico approaches. The results showed that ergosterol is involved in yeast resistance to tert-butyl hydroperoxide and protects lipids against oxidation in liposomes. A computational study based on quantum chemistry revealed that this protection could be related to its antioxidant properties operating through an electron transfer followed by a proton transfer mechanism. This study demonstrates the antioxidant role of ergosterol and proposes knowledge elements to explain the specific accumulation of this sterol in late branching fungi. Ergosterol, as a natural antioxidant molecule, could also play a role in the incompletely understood beneficial effects of some mushrooms on health.


2021 ◽  
pp. 1-13
Author(s):  
Jonas Folke ◽  
Sertan Arkan ◽  
Isak Martinsson ◽  
Susana Aznar ◽  
Gunnar Gouras ◽  
...  

Background: α-synuclein (α-syn) aggregation contributes to the progression of multiple neurodegenerative diseases. We recently found that the isoform b of the co-chaperone DNAJB6 is a strong suppressor of a-syn aggregation in vivo and in vitro. However, nothing is known about the role of the endogenous isoform b of DNAJB6 (DNAJB6b) in health and disease, due to lack of specific antibodies. Objective: Here we generated a novel anti-DNAJB6b antibody to analyze the localization and expression this isoform in cells, in tissue and in clinical material. Methods: To address this we used immunocytochemistry, immunohistochemistry, as well as a novel quantitative DNAJB6 specific ELISA method. Results: The endogenous protein is mainly expressed in the cytoplasm and in neurites in vitro, where it is found more in dendrites than in axons. We further verified in vivo that DNAJB6b is expressed in the dopaminergic neurons of the substantia nigra pars compacta (SNpc), which is a neuronal subpopulation highly sensitive to α-syn aggregation, that degenerate to a large extend in patients with Parkinson’s disease (PD) and multiple system atrophy (MSA). When we analyzed the expression levels of DNAJB6b in brain material from PD and MSA patients, we found a downregulation of DNAJB6b by use of ELISA based quantification. Interestingly, this was also true when analyzing tissue from patients with progressive supranuclear palsy, a taupathic atypical parkinsonian disorder. However, the total level of DNAJB6 was upregulated in these three diseases, which may indicate an upregulation of the other major isoform of DNAJB6, DNAJB6a. Conclusion: This study shows that DNAJB6b is downregulated in several different neurodegenerative diseases, which makes it an interesting target to further investigate in relation to amyloid protein aggregation and disease progression.


1993 ◽  
Vol 264 (2) ◽  
pp. C457-C463 ◽  
Author(s):  
I. Dorup ◽  
T. Clausen

In young rats fed a Mg(2+)-deficient diet for 3 wk, Mg2+ and K+ contents in soleus and extensor digitorum longus muscles were significantly reduced and closely correlated. In isolated soleus muscles, Mg2+ depletion induced an even more pronounced loss of K+, and Mg2+ and K+ contents were correlated over a wide range (r = 0.95, P < 0.001). Extracellular Mg2+ (0-1.2 mM) caused no change in total or ouabain-suppressible 86Rb influx. After long-term incubation in Ca(2+)-Mg(2+)-free buffer with EDTA and EGTA, cellular Mg2+ and K+ contents were reduced by 35 and 15%, respectively, without any reduction in ATP and total or ouabain-suppressible 86Rb influx. In Mg(2+)-depleted muscles 42K efflux was increased by up to 42%, and repletion with Mg2+ produced a graded decrease. We conclude that Mg2+ and K+ contents are closely correlated in muscles Mg2+ depleted in vivo or in vitro and that neither extracellular nor moderate intracellular Mg2+ depletion affects total or Na(+)-K+ pump-mediated K+ influx. The reduced K+ content may rather be related to increased K+ efflux from the muscles.


2021 ◽  
Vol 17 (1) ◽  
pp. e1009153
Author(s):  
Bindu S. Mayi ◽  
Jillian A. Leibowitz ◽  
Arden T. Woods ◽  
Katherine A. Ammon ◽  
Alphonse E. Liu ◽  
...  

Neuropilin-1 (NRP-1), a member of a family of signaling proteins, was shown to serve as an entry factor and potentiate SARS Coronavirus 2 (SARS-CoV-2) infectivity in vitro. This cell surface receptor with its disseminated expression is important in angiogenesis, tumor progression, viral entry, axonal guidance, and immune function. NRP-1 is implicated in several aspects of a SARS-CoV-2 infection including possible spread through the olfactory bulb and into the central nervous system and increased NRP-1 RNA expression in lungs of severe Coronavirus Disease 2019 (COVID-19). Up-regulation of NRP-1 protein in diabetic kidney cells hint at its importance in a population at risk of severe COVID-19. Involvement of NRP-1 in immune function is compelling, given the role of an exaggerated immune response in disease severity and deaths due to COVID-19. NRP-1 has been suggested to be an immune checkpoint of T cell memory. It is unknown whether involvement and up-regulation of NRP-1 in COVID-19 may translate into disease outcome and long-term consequences, including possible immune dysfunction. It is prudent to further research NRP-1 and its possibility of serving as a therapeutic target in SARS-CoV-2 infections. We anticipate that widespread expression, abundance in the respiratory and olfactory epithelium, and the functionalities of NRP-1 factor into the multiple systemic effects of COVID-19 and challenges we face in management of disease and potential long-term sequelae.


2019 ◽  
Vol 20 (6) ◽  
pp. 1318 ◽  
Author(s):  
Alexandra Kupke ◽  
Sabrina Becker ◽  
Konstantin Wewetzer ◽  
Barbara Ahlemeyer ◽  
Markus Eickmann ◽  
...  

Mammalian Bornavirus (BoDV-1) typically causes a fatal neurologic disorder in horses and sheep, and was recently shown to cause fatal encephalitis in humans with and without transplant reception. It has been suggested that BoDV-1 enters the central nervous system (CNS) via the olfactory pathway. However, (I) susceptible cell types that replicate the virus for successful spread, and (II) the role of olfactory ensheathing cells (OECs), remained unclear. To address this, we studied the intranasal infection of adult rats with BoDV-1 in vivo and in vitro, using olfactory mucosal (OM) cell cultures and the cultures of purified OECs. Strikingly, in vitro and in vivo, viral antigen and mRNA were present from four days post infection (dpi) onwards in the olfactory receptor neurons (ORNs), but also in all other cell types of the OM, and constantly in the OECs. In contrast, in vivo, BoDV-1 genomic RNA was only detectable in adult and juvenile ORNs, nerve fibers, and in OECs from 7 dpi on. In vitro, the rate of infection of OECs was significantly higher than that of the OM cells, pointing to a crucial role of OECs for infection via the olfactory pathway. Thus, this study provides important insights into the transmission of neurotropic viral infections with a zoonotic potential.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1397-1397
Author(s):  
Claude Capron ◽  
Catherine Lacout ◽  
Yann Lecluse ◽  
Valérie Jalbert ◽  
Elisabeth Cramer Bordé ◽  
...  

Abstract TGF-β1 is a cytokine with pleiotropic effects. It has been considered that TGF-β1plays a major role on hematopoietic stem cells (HSC) based on in vitro experiment. Achieving in vivo experiments proved to be difficult because constitutive TGF-β1 knock-out (KO) in mice leads to lethality during the first 4 weeks of life from a wasting syndrome related to tissue infiltration by activated T cells and macrophages. For this reason, hematopoiesis of TGF-β1−/− mice has not been studied in details. In contrast the role of TGF-β1 has been recently extensively studied in conditional TGF-β type I receptor (TβRI) KO mice. No clear effect was observed on HSC functions, suggesting that TGF-β1 was not a key physiological regulator of hematopoiesis in the adult. However, these experiments have some limitations. They do not exclude a putative role for TGF-β1 during fetal hematopoiesis and they do not specifically address the role of TGF-β1 on hematopoiesis because KO of TGF-β receptor leads to signaling arrest for all TGF-βs. In addition, other receptors may be involved in TGF-β1 signaling. For these reasons, we have investigated the hematopoiesis of constitutive TGF-β1 KO mice with a mixed Sv129 × CF-1 genetic background allowing the birth of a high proportion of homozygotes. In 2 week-old neonate mice, we have shown a decrease of bone marrow (BM) and spleen progenitors and a decrease of immature progenitors colony forming unit of the spleen (CFU-s). Moreover this was associated with a loss in reconstitutive activity of TGF-β1−/− HSC from BM. However, although asymptomatic, these mice had an excess of activated lymphocytes and an augmentation of Sca-1 antigen on hematopoietic cells suggesting an excess of γ-interferon release. Thus we studied hematopoiesis of 7 to 10 days-old neonate mice, before phenotypic modification and inflammatory cytokine release. Similar results were observed with a decrease in the number of progenitors and in the proliferation of TGF-β1−/− BM cells along with an increased differentiation but without an augmentation in apoptosis. Moreoever, a loss of long term reconstitutive capacity of BM Lineage negative (Lin−) TGF-β1−/− cells along with a diminution of homing of TGF-β1−/− progenitors was found. These results demonstrate that TGF-β1 may play a major role on the HSC/Progenitor compartment in vivo and that this defect does not seem to be linked to the immune disease. To completely overpass the risk of the inflammatory syndrome, we analyzed hematopoiesis of fetal liver (FL) of TGF-β1−/− mice and still found a decrease in progenitors, a profound defect in the proliferative capacities, in long term reconstitutive activity and homing potential of primitive FL hematopoietic cells. Our results demonstrate that TGF-β1 plays an important role during hematopoietic embryonic development. Altogether these findings suggest that TGF-β1 is a potent positive regulator for the in vivo homeostasis of the HSC compartment.


Sign in / Sign up

Export Citation Format

Share Document