scholarly journals Another Way to Implement Diffraction Contrast in SEM

2003 ◽  
Vol 11 (2) ◽  
pp. 36-38 ◽  
Author(s):  
Xiaodong Tao ◽  
Alwyn Eades

SEM users are familiar with two forms of contrast in SEM images: topographic contrast and atomic number contrast. We can now add a third form of contrast. Contrast can arise due to the different orientation of grains in the sample. However, in normal operation this con trast is very weak, since in the SEM the beam includes a range of incident angles. This has the effect of averaging out diffraction contrast from the different orientations of the grains. This contrast is generally much stronger when the trast is very weak, since in the SEM the beam includes a range of incident angles. This has the effect of averaging out diffraction contrast from the different orientations of the grains. This contrast is generally much stronger when the incident beam is an ion beam rather than an electron beam — contrast between the grains is strong in ion-beam images but not in normal SEM images.

2001 ◽  
Vol 7 (S2) ◽  
pp. 514-515 ◽  
Author(s):  
Larry Rice

Electron beam induced current (EBIC) is the common term used in the semiconductor industry for the failure analysis and yield enhancement of semiconductor devices using SEM to electrically pinpoint leakage sites. EBIC is a useful technique for locating defects in diodes, transistors, and capacitors where the scanning electron microscope beam is used to generate a signal and the sample is the detector. Often during yield enhancement efforts the failure analyst is asked to determine the mechanism for which a PC structure (which may contain as many as a few hundred thousand structures in one device) is failing tests. Blind cross sections rarely give evidence of the failure mechanism. EBIC can be used to pinpoint the bad site which is then precision cross-sectioned using the focused ion beam (FIB).When an electron beam impinges on a semiconductor such as silicon, electron-hole pairs are created when the incident beam transfers enough energy to promote an electron from the valance band to the conduction band.


Author(s):  
Dudley M. Sherman ◽  
Thos. E. Hutchinson

The in situ electron microscope technique has been shown to be a powerful method for investigating the nucleation and growth of thin films formed by vacuum vapor deposition. The nucleation and early stages of growth of metal deposits formed by ion beam sputter-deposition are now being studied by the in situ technique.A duoplasmatron ion source and lens assembly has been attached to one side of the universal chamber of an RCA EMU-4 microscope and a sputtering target inserted into the chamber from the opposite side. The material to be deposited, in disc form, is bonded to the end of an electrically isolated copper rod that has provisions for target water cooling. The ion beam is normal to the microscope electron beam and the target is placed adjacent to the electron beam above the specimen hot stage, as shown in Figure 1.


Author(s):  
M. D. Coutts ◽  
E. R. Levin

On tilting samples in an SEM, the image contrast between two elements, x and y often decreases to zero at θε, which we call the no-contrast angle. At angles above θε the contrast is reversed, θ being the angle between the specimen normal and the incident beam. The available contrast between two elements, x and y, in the SEM can be defined as,(1)where ix and iy are the total number of reflected and secondary electrons, leaving x and y respectively. It can easily be shown that for the element x,(2)where ib is the beam current, isp the specimen absorbed current, δo the secondary emission at normal incidence, k is a constant, and m the reflected electron coefficient.


MRS Advances ◽  
2020 ◽  
Vol 5 (64) ◽  
pp. 3507-3520
Author(s):  
Chunhui Dai ◽  
Kriti Agarwal ◽  
Jeong-Hyun Cho

AbstractNanoscale self-assembly, as a technique to transform two-dimensional (2D) planar patterns into three-dimensional (3D) nanoscale architectures, has achieved tremendous success in the past decade. However, an assembly process at nanoscale is easily affected by small unavoidable variations in sample conditions and reaction environment, resulting in a low yield. Recently, in-situ monitored self-assembly based on ion and electron irradiation has stood out as a promising candidate to overcome this limitation. The usage of ion and electron beam allows stress generation and real-time observation simultaneously, which significantly enhances the controllability of self-assembly. This enables the realization of various complex 3D nanostructures with a high yield. The additional dimension of the self-assembled 3D nanostructures opens the possibility to explore novel properties that cannot be demonstrated in 2D planar patterns. Here, we present a rapid review on the recent achievements and challenges in nanoscale self-assembly using electron and ion beam techniques, followed by a discussion of the novel optical properties achieved in the self-assembled 3D nanostructures.


Author(s):  
H.J. Ryu ◽  
A.B. Shah ◽  
Y. Wang ◽  
W.-H. Chuang ◽  
T. Tong

Abstract When failure analysis is performed on a circuit composed of FinFETs, the degree of defect isolation, in some cases, requires isolation to the fin level inside the problematic FinFET for complete understanding of root cause. This work shows successful application of electron beam alteration of current flow combined with nanoprobing for precise isolation of a defect down to fin level. To understand the mechanism of the leakage, transmission electron microscopy (TEM) slice was made along the leaky drain contact (perpendicular to fin direction) by focused ion beam thinning and lift-out. TEM image shows contact and fin. Stacking fault was found in the body of the silicon fin highlighted by the technique described in this paper.


Author(s):  
Gunnar Zimmermann ◽  
Richard Chapman

Abstract Dual beam FIBSEM systems invite the use of innovative techniques to localize IC fails both electrically and physically. For electrical localization, we present a quick and reliable in-situ FIBSEM technique to deposit probe pads with very low parasitic leakage (Ipara < 4E-11A at 3V). The probe pads were Pt, deposited with ion beam assistance, on top of highly insulating SiOx, deposited with electron beam assistance. The buried plate (n-Band), p-well, wordline and bitline of a failing and a good 0.2 μm technology DRAM single cell were contacted. Both cells shared the same wordline for direct comparison of cell characteristics. Through this technique we electrically isolated the fail to a single cell by detecting leakage between the polysilicon wordline gate and the cell diffusion. For physical localization, we present a completely in-situ FIBSEM technique that combines ion milling, XeF2 staining and SEM imaging. With this technique, the electrically isolated fail was found to be a hole in the gate oxide at the bad cell.


Author(s):  
P. Perdu ◽  
G. Perez ◽  
M. Dupire ◽  
B. Benteo

Abstract To debug ASIC we likely use accurate tools such as an electron beam tester (Ebeam tester) and a Focused Ion Beam (FIB). Interactions between ions or electrons and the target device build charge up on its upper glassivation layer. This charge up could trigger several problems. With Ebeam testing, it sharply decreases voltage contrast during Image Fault Analysis and hide static voltage contrast. During ASIC reconfiguration with FIB, it could induce damages in the glassivation layer. Sample preparation is getting a key issue and we show how we can deal with it by optimizing carbon coating of the devices. Coating is done by an evaporator. For focused ion beam reconfiguration, we need a very thick coating. Otherwise the coating could be sputtered away due to imaging. This coating is use either to avoid charge-up on glassivated devices or as a sacrificial layer to avoid short circuits on unglassivated devices. For electron beam Testing, we need a very thin coating, we are now using an electrical characterization method with an insitu control system to obtain the right thin thickness. Carbon coating is a very cheap and useful method for sample preparation. It needs to be tuned according to the tool used.


Author(s):  
R. Siemieniec ◽  
A. Pugatschow ◽  
C. Geissler ◽  
H.-J. Schulze ◽  
F.-J. Niedernostheide ◽  
...  

Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 51
Author(s):  
Michela Relucenti ◽  
Giuseppe Familiari ◽  
Orlando Donfrancesco ◽  
Maurizio Taurino ◽  
Xiaobo Li ◽  
...  

Several imaging methodologies have been used in biofilm studies, contributing to deepening the knowledge on their structure. This review illustrates the most widely used microscopy techniques in biofilm investigations, focusing on traditional and innovative scanning electron microscopy techniques such as scanning electron microscopy (SEM), variable pressure SEM (VP-SEM), environmental SEM (ESEM), and the more recent ambiental SEM (ASEM), ending with the cutting edge Cryo-SEM and focused ion beam SEM (FIB SEM), highlighting the pros and cons of several methods with particular emphasis on conventional SEM and VP-SEM. As each technique has its own advantages and disadvantages, the choice of the most appropriate method must be done carefully, based on the specific aim of the study. The evaluation of the drug effects on biofilm requires imaging methods that show the most detailed ultrastructural features of the biofilm. In this kind of research, the use of scanning electron microscopy with customized protocols such as osmium tetroxide (OsO4), ruthenium red (RR), tannic acid (TA) staining, and ionic liquid (IL) treatment is unrivalled for its image quality, magnification, resolution, minimal sample loss, and actual sample structure preservation. The combined use of innovative SEM protocols and 3-D image analysis software will allow for quantitative data from SEM images to be extracted; in this way, data from images of samples that have undergone different antibiofilm treatments can be compared.


Sign in / Sign up

Export Citation Format

Share Document