Thermal Properties of Rubber Compounds I. Thermal Conductivity of Rubber and Rubber Compounding Materials

1934 ◽  
Vol 26 (3) ◽  
pp. 303-306 ◽  
Author(s):  
C. E. Barnett
1935 ◽  
Vol 8 (1) ◽  
pp. 138-149 ◽  
Author(s):  
C. E. Barnett ◽  
W. C. Mathews

Abstract THE first paper (1) of this series discussed thermal conductivity of rubber and a number of compounding ingredients which were measured using the electric current as the source of heat. In this article the fundamental factors controlling the generation of heat and the variations possible by pigmentation are being studied. Results obtained for pigmented rubber in the pendulum and flexometer will be discussed and correlated. In the writers' laboratory two machines have been used extensively in studying the temperature developed in rubber compounds subjected to distortion by compressive forces. The first of these is a flexometer described by Cooper (2), and the second a compression machine in which a rubber block 14 cm. (5.5 inches) in diameter and 9.53 cm. (3.75 inches) high is pounded with a definite load a specified number of times per minute. The laboratory test block used in the flexometer is in the shape of a frustrum of a rectangular pyramid, of which the base is 5.4 × 2.86 cm. (2.126 × 1.125 inches), the top 5.08 × 2.54 cm. (2 × 1 inches), and the altitude 3.81 cm. (1.5 inches). This block of rubber is compressed between two plates under definite load, one of the plates being stationary while the other travels in a circular motion of definite magnitude. After the sample has been placed in the machine, the moving plate is set to one side of the center. Both the loading and the amount of offset may be varied within wide limits. With this machine one may study either the temperature developed over a period of flexing or the time required to compress the sample a predetermined amount.


Author(s):  
Messiha Saad ◽  
Darryl Baker ◽  
Rhys Reaves

Thermal properties of materials such as specific heat, thermal diffusivity, and thermal conductivity are very important in the engineering design process and analysis of aerospace vehicles as well as space systems. These properties are also important in power generation, transportation, and energy storage devices including fuel cells and solar cells. Thermal conductivity plays a critical role in the performance of materials in high temperature applications. Thermal conductivity is the property that determines the working temperature levels of the material, and it is an important parameter in problems involving heat transfer and thermal structures. The objective of this research is to develop thermal properties data base for carbon-carbon and graphitized carbon-carbon composite materials. The carbon-carbon composites tested were produced by the Resin Transfer Molding (RTM) process using T300 2-D carbon fabric and Primaset PT-30 cyanate ester. The graphitized carbon-carbon composite was heat treated to 2500°C. The flash method was used to measure the thermal diffusivity of the materials; this method is based on America Society for Testing and Materials, ASTM E1461 standard. In addition, the differential scanning calorimeter was used in accordance with the ASTM E1269 standard to determine the specific heat. The thermal conductivity was determined using the measured values of their thermal diffusivity, specific heat, and the density of the materials.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3241
Author(s):  
Krzysztof Powała ◽  
Andrzej Obraniak ◽  
Dariusz Heim

The implemented new legal regulations regarding thermal comfort, the energy performance of residential buildings, and proecological requirements require the design of new building materials, the use of which will improve the thermal efficiency of newly built and renovated buildings. Therefore, many companies producing building materials strive to improve the properties of their products by reducing the weight of the materials, increasing their mechanical properties, and improving their insulating properties. Currently, there are solutions in phase-change materials (PCM) production technology, such as microencapsulation, but its application on a large scale is extremely costly. This paper presents a solution to the abovementioned problem through the creation and testing of a composite, i.e., a new mixture of gypsum, paraffin, and polymer, which can be used in the production of plasterboard. The presented solution uses a material (PCM) which improves the thermal properties of the composite by taking advantage of the phase-change phenomenon. The study analyzes the influence of polymer content in the total mass of a composite in relation to its thermal conductivity, volumetric heat capacity, and diffusivity. Based on the results contained in this article, the best solution appears to be a mixture with 0.1% polymer content. It is definitely visible in the tests which use drying, hardening time, and paraffin absorption. It differs slightly from the best result in the thermal conductivity test, while it is comparable in terms of volumetric heat capacity and differs slightly from the best result in the thermal diffusivity test.


2014 ◽  
Vol 722 ◽  
pp. 25-29 ◽  
Author(s):  
Q.L. Che ◽  
X.K. Chen ◽  
Y.Q. Ji ◽  
Y.W. Li ◽  
L.X. Wang ◽  
...  

The carbide forming is proposed to improve interfacial bonding between diamond particles and copper-matrix for diamond/copper composites. The volume fraction of diamond and minor titanium are optimized. The microstructures, thermal properties, interface reaction production and its effect of minor titanium on the properties of the composites are investigated. The results show that the bonding force and thermal conductivity of the diamond/Cu-Ti alloys composites is much weaker and lower than that of the coated-diamond/Cu. the thermal conductivity of coated-60 vol. % diamond/Cu composites is 618 W/m K which is 80 % of the theoretical prediction value. The high thermal conductivity has been achieved by forming the titanium carbide at diamond/copper interface to gain a good interface.


Holzforschung ◽  
2008 ◽  
Vol 62 (1) ◽  
pp. 91-98 ◽  
Author(s):  
Johannes Konnerth ◽  
David Harper ◽  
Seung-Hwan Lee ◽  
Timothy G. Rials ◽  
Wolfgang Gindl

Abstract Cross sections of wood adhesive bonds were studied by scanning thermal microscopy (SThM) with the aim of scrutinizing the distribution of adhesive in the bond line region. The distribution of thermal conductivity, as well as temperature in the bond line area, was measured on the surface by means of a nanofabricated thermal probe offering high spatial and thermal resolution. Both the thermal conductivity and the surface temperature measurements were found suitable to differentiate between materials in the bond region, i.e., adhesive, cell walls and embedding epoxy. Of the two SThM modes available, the surface temperature mode provided images with superior optical contrast. The results clearly demonstrate that the polyurethane adhesive did not cause changes of thermal properties in wood cell walls with adhesive contact. By contrast, cell walls adjacent to a phenol-resorcinol-formaldehyde adhesive showed distinctly changed thermal properties, which is attributed to the presence of adhesive in the wood cell wall.


2012 ◽  
Vol 512-515 ◽  
pp. 469-473 ◽  
Author(s):  
L. Liu ◽  
Z. Ma ◽  
F.C. Wang ◽  
Q. Xu

According to the theory of phonon transport and thermal expansion, a new complex rare-earth zirconate ceramic (La0.4Sm0.5Yb0.1)2Zr2O7, with low thermal conductivity and high thermal expansion coefficient, has been designed by doping proper ions at A sites. The complex rare-earth zirconate (La0.4Sm0.5Yb0.1)2Zr2O7 powder for thermal barrier coatings (TBCs) was synthesized by coprecipitation-calcination method. The phase, microstructure and thermal properties of the new material were investigated. The results revealed that single phase (La0.4Sm0.5Yb0.1)2Zr2O7 with pyrochlore structure was synthesized. The thermal conductivity and the thermal expansion coefficient of the designed complex rare-earth zirconate ceramic is about 1.3W/m•K and 10.5×10-6/K, respectively. These results imply that (La0.4Sm0.5Yb0.1)2Zr2O7 can be explored as the candidate material for the ceramic layer in TBCs system.


Author(s):  
S. M. Guo ◽  
M. B. Silva ◽  
Patrick F. Mensah ◽  
Nalini Uppu

Thermal barrier coatings (TBCs) are used in gas turbine engines to achieve a better efficiency by allowing increased turbine inlet temperature and decreasing the amount of cooling air used. Plasma spraying is one of the most reliable methods to produce TBCs, which are generally comprised of a top coating of ceramic and a bond-coat of metal. Usually, the top coating is Yttria-Stabilized-Zirconia (YSZ), providing the thermal barrier effect. The bond-coat is typically a layer of M-Cr-Al-Y (where “M” stands for “metal”), employed to improve the attachment between the ceramic top-coat and the substrate. Due to the extreme temperature gradient presented in the plasma jet and the wide particle size distribution, during the coating process, injected ceramic powders may experience a significantly different heating process. Different heating history, coupled with the substrate preheating temperature, may affect the thermal properties of the YSZ layers. In this paper, four sets of mol 8% YSZ disks are fabricated under controlled temperatures of 1100°C, 1200°C, 1400°C and 1600°C. Subsequently the thermal properties and the microstructures of these YSZ disks are studied. The results indicate a strong microstructure change at a temperature slightly below 1400°C. For a high sintering temperature, a dense YSZ layer can be formed, which is good for gas tight operation; At low sintering temperature, say 1200°C, a porous YSZ layer is formed, which has the advantage of low thermal conductivity. For gas turbine TBC applications, a robust low thermal conductivity YSZ layer is desirable, while for Solid Oxide Fuel Cells, a gas-tight YSZ film must be formed. This study offers a general guideline on how to prepare YSZ layers, mainly by controlling the heating process, to form microstructures with desired properties.


2021 ◽  
Vol 320 ◽  
pp. 181-185
Author(s):  
Elvija Namsone ◽  
Genadijs Sahmenko ◽  
Irina Shvetsova ◽  
Aleksandrs Korjakins

Because of low calcination temperature, magnesia binders are attributed as low-CO2 emission materials that can benefit the environment by reducing the energy consumption of building sector. Portland cement in different areas of construction can be replaced by magnesia binder which do not require autoclave treatment for hardening, it has low thermal conductivity and high strength properties. Magnesium-based materials are characterized by decorativeness and ecological compatibility.The experimental part of this research is based on the preparation of magnesia binders by adding raw materials and calcinated products and caustic magnesia. The aim of this study was to obtain low-CO2 emission and eco-friendly material using local dolomite waste materials, comparing physical, mechanical, thermal properties of magnesium binders.


2021 ◽  
Vol 407 ◽  
pp. 185-191
Author(s):  
Josef Tomas ◽  
Andreas Öchsner ◽  
Markus Merkel

Experimental analyses are performed to determine thermal conductivity, thermal diffusivity and volumetric specific heat with transient plane source method on hollow sphere structures. Single-sided testing is used on different samples and different surfaces. Results dependency on the surface is observed.


Author(s):  
Yener Usul ◽  
Mustafa Özçatalbaş

Abstract Increasing demand for usage of electronics intensely in narrow enclosures necessitates accurate thermal analyses to be performed. Conduction based FEM (Finite Element Method) is a common and practical way to examine the thermal behavior of an electronic system. First step to perform a numerical analysis for any system is to set up the correct analysis model. In this paper, a method for obtaining the coefficient of thermal conductivity and specific heat capacity of a PCB which has generally a complex composite layup structure composed of conductive layers, and dielectric layers. In the study, above mentioned properties are obtained performing a simple nondestructive experiment and a numerical analysis. In the method, a small portion of PCB is sandwiched from one side at certain pressure by jaws. A couple of linear temperature profiles are applied to the jaws successively. Unknown values are tuned in the analysis model until the results of FEM analysis and experiment match. The values for the coefficient of thermal conductivity and specific heat capacity which the experiment and numerical analysis results match can be said to be the actual values. From this point on, the PCB whose thermal properties are determined can be analyzed numerically for any desired geometry and boundary condition.


Sign in / Sign up

Export Citation Format

Share Document