Sex differences in immune response to a social stressor

2013 ◽  
Author(s):  
Christopher Gelety ◽  
Lauren Johnson ◽  
Melissa Birkett
Endocrinology ◽  
2022 ◽  
Author(s):  
Juyeun Lee ◽  
Katie Troike ◽  
R’ay Fodor ◽  
Justin D Lathia

Abstract Biological sex impacts a wide array of molecular and cellular functions that impact organismal development and can influence disease trajectory in a variety of pathophysiological states. In non-reproductive cancers, epidemiological sex differences have been observed in a series of tumors, and recent work has identified previously unappreciated sex differences in molecular genetics and immune response. However, the extent of these sex differences in terms of drivers of tumor growth and therapeutic response is less clear. In glioblastoma, the most common primary malignant brain tumor, there is a male bias in incidence and outcome, and key genetic and epigenetic differences, as well as differences in immune response driven by immune-suppressive myeloid populations, have recently been revealed. Glioblastoma is a prototypic tumor in which cellular heterogeneity is driven by populations of therapeutically resistant cancer stem cells (CSCs) that underlie tumor growth and recurrence. There is emerging evidence that GBM CSCs may show a sex difference, with male tumor cells showing enhanced self-renewal, but how sex differences impact CSC function is not clear. In this mini-review, we focus on how sex hormones may impact CSCs in GBM and implications for other cancers with a pronounced CSC population. We also explore opportunities to leverage new models to better understand the contribution of sex hormones versus sex chromosomes to CSC function. With the rising interest in sex differences in cancer, there is an immediate need to understand the extent to which sex differences impact tumor growth, including effects on CSC function.


2014 ◽  
Vol 281 (1790) ◽  
pp. 20140333 ◽  
Author(s):  
Crystal M. Vincent ◽  
Darryl T. Gwynne

Sex differences in immunity are often observed, with males generally having a weaker immune system than females. However, recent data in a sex-role-reversed species in which females compete to mate with males suggest that sexually competitive females have a weaker immune response. These findings support the hypothesis that sexual dimorphism in immunity has evolved in response to sex-specific fitness returns of investment in traits such as parental investment and longevity, but the scarcity of data in sex-reversed species prevents us from drawing general conclusions. Using an insect species in which males make a large but variable parental investment in their offspring, we use two indicators of immunocompetence to test the hypothesis that sex-biased immunity is determined by differences in parental investment. We found that when the value of paternal investment was experimentally increased, male immune investment became relatively greater than that of females. Thus, in this system, in which the direction of sexual competition is plastic, the direction of sex-biased immunity is also plastic and appears to track relative parental investment.


2016 ◽  
Vol 58 ◽  
pp. 327-337 ◽  
Author(s):  
Kyle Chiman Cai ◽  
Spencer van Mil ◽  
Emma Murray ◽  
Jean-François Mallet ◽  
Chantal Matar ◽  
...  

Stroke ◽  
2016 ◽  
Vol 47 (suppl_1) ◽  
Author(s):  
Meaghan Roy-O'Reilly ◽  
Hetal Mistry ◽  
Madeline Levy ◽  
Louise McCullough

Background and Purpose: Females exhibit a more robust immune response in many disease models, yet sex differences in the inflammatory response to ischemia remain largely unexplored. We conducted flow cytometry and RNA sequencing of blood from ischemic stroke patients, with follow-up studies in mice. Hypothesis: We assessed the hypothesis that there are sex differences in the acute immune response to ischemic stroke. Methods: Patient samples were drawn at 24 hours post-stroke for flow cytometry (n=6) and RNA sequencing Analysis (n=40). For murine studies, male and ovariectomized (OVX) female animals (n=14) were subjected to 90-minute middle cerebral artery occlusion or sham surgery and sacrificed at 24 hours. Murine blood was stained for leukocyte markers and CD62L (L-selectin). Results were analyzed by student T-test and two-way ANOVA. Results: RNA sequencing revealed that 24 hours after ischemic stroke, female patients had 79 significantly upregulated genes, compared to male patients with 6 significantly upregulated genes. Human flow cytometry revealed that male stroke patients had a significantly higher percentage of monocytes (p=.026), while females had a greater percentage of CD8+ T-cells (p=.023). Murine flow cytometry showed a post-stroke increase in peripheral myeloid cells at 24 hours in male mice only (p=.0046), whereas female mice had a higher CD8/CD4 T cell ratio (p=.0027). Neutrophils from male sham animals displayed greater L-selectin positivity, with stroke-induced shedding of L-selectin seen only in males (sex/stroke p=.0266). Male monocytes and lymphocytes also displayed higher L-selectin positivity (p=.0079, p=.0004). Conclusion: These results suggest that the immune response to ischemic stroke is different in male and female patients, a phenomenon that can be recapitulated in a mouse model of experimental stroke. Female immune cells exhibit a higher level of baseline activation (reduced L-selectin expression) and post-stroke activity, which may enable a quicker and more robust response to immune challenges. Understanding sex differences in the acute immune response is crucial to developing future immunomodulatory drugs for the safe and effective treatment of ischemic stroke in both sexes.


1993 ◽  
Vol 17 (4) ◽  
pp. 832-840 ◽  
Author(s):  
C. J. Grossman ◽  
M. Nienaber ◽  
C. L. Mendenhall ◽  
P. Hurtubise ◽  
G. A. Roselle ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Wenhao Zhu ◽  
Yinan Nan ◽  
Shaoqing Wang ◽  
Wei Liu

Ischemic stroke (IS) is a complex disease with sex differences in epidemiology, presentations, and outcomes. However, the sex-specific mechanism underlying IS remains unclear. The purpose of this study was to identify key genes contributing to biological differences between sexes. First, we downloaded the gene expression data of GSE22255 from Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were identified using R software and related packages. Second, DEGs were separately analyzed by Gene Ontology enrichment and pathways analyses. Third, protein-protein interaction (PPI) network was constructed to further investigate the interactions of DEGs. A total of 123 DEGs were identified between sexes, including 8 upregulated and 115 downregulated genes. In the PPI network, ten key genes were identified, including IL1α, IL1β, IL6, IL8, CXCL1, CXCL2, CXCL20, CCL4, ICAM1, and PTGS2. Functional enrichment analysis revealed that these genes were mainly enriched in biological processes of immune response and apoptotic process, also in pathways of TNF and NOD-like receptor signaling. In conclusion, the above ten genes may have a protective effect on IS females through their direct or indirect involvement in biological processes of immune response and apoptotic process, as well as in TNF and NOD-like receptor signaling pathways. The results of this study may help to gain new insights into the sex-specific mechanisms underlying IS females and may suggest potential therapeutic targets for disease treatment.


2021 ◽  
Vol 22 (7) ◽  
pp. 3696
Author(s):  
Benedetta Angeloni ◽  
Rachele Bigi ◽  
Gianmarco Bellucci ◽  
Rosella Mechelli ◽  
Chiara Ballerini ◽  
...  

Multiple sclerosis is a complex, multifactorial, dysimmune disease prevalent in women. Its etiopathogenesis is extremely intricate, since each risk factor behaves as a variable that is interconnected with others. In order to understand these interactions, sex must be considered as a determining element, either in a protective or pathological sense, and not as one of many variables. In particular, sex seems to highly influence immune response at chromosomal, epigenetic, and hormonal levels. Environmental and genetic risk factors cannot be considered without sex, since sex-based immunological differences deeply affect disease onset, course, and prognosis. Understanding the mechanisms underlying sex-based differences is necessary in order to develop a more effective and personalized therapeutic approach.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shaohua Qi ◽  
Conelius Ngwa ◽  
Diego A. Morales Scheihing ◽  
Abdullah Al Mamun ◽  
Hilda W. Ahnstedt ◽  
...  

Abstract Background Sex differences in COVID-19 are increasingly recognized globally. Although infection rates are similar between the sexes, men have more severe illness. The mechanism underlying these sex differences is unknown, but a differential immune response to COVID-19 has been implicated in several recent studies. However, how sex differences shape the immune response to COVID-19 remains understudied. Methods We collected demographics and blood samples from over 600 hospitalized patients diagnosed with COVID-19 from May 24th 2020 to April 28th, 2021. These patients were divided into two cohorts: Cohort 1 was further classified into three groups based on the severity of the disease (mild, moderate and severe); Cohort 2 patients were longitudinally followed at three time points from hospital admission (1 day, 7 days, and 14 days). MultiPlex and conventional ELISA were used to examine inflammatory mediator levels in the plasma in both cohorts. Flow cytometry was conducted to examine leukocyte responses in Cohort 2. Results There were more COVID+ males in the total cohort, and the mortality rate was higher in males vs. females. More male patients were seen in most age groups (in 10-year increments), and in most ethnic groups. Males with severe disease had significantly higher levels of pro-inflammatory cytokines (IL-6, IL-8, MCP-1) than females; levels of IL-8, GRO, sCD40L, MIP-1β, MCP-1 were also significantly higher in severe vs. mild or control patients in males but not in females. Females had significantly higher anti-inflammatory cytokine IL-10 levels at 14 days compared to males, and the level of IL-10 significantly increased in moderate vs. the control group in females but not in males. At 7 days and 14 days, males had significantly more circulating neutrophils and monocytes than females; however, B cell numbers were significantly higher in females vs. males. Conclusion Sex differences exist in hospitalized patients with acute COVID-19 respiratory tract infection. Exacerbated inflammatory responses were seen in male vs. female patients, even when matched for disease severity. Males appear to have a more robust innate immune response, and females mount a stronger adaptive immune response to COVID-19 respiratory tract infection.


Sign in / Sign up

Export Citation Format

Share Document