scholarly journals Mature IgM-expressing plasma cells sense antigen and develop competence for cytokine production upon antigenic challenge

2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Pascal Blanc ◽  
Ludovic Moro-Sibilot ◽  
Lucas Barthly ◽  
Ferdinand Jagot ◽  
Sébastien This ◽  
...  
Blood ◽  
2011 ◽  
Vol 117 (6) ◽  
pp. 1869-1879 ◽  
Author(s):  
Axel Kallies ◽  
Sebastian Carotta ◽  
Nicholas D. Huntington ◽  
Nicholas J. Bernard ◽  
David M. Tarlinton ◽  
...  

Abstract Natural killer (NK) cells are innate lymphocytes capable of immediate effector functions including cytokine production and cytotoxicity. Compared with B and T cells, the factors that control the peripheral maturation of NK cells are poorly understood. We show that Blimp1, a transcriptional repressor required for the differentiation of plasma cells and short-lived effector T cells, is expressed by NK cells throughout their development. Interleukin 15 (IL-15) is required for the early induction of Blimp1 in NK cells, with expression increasing in the most mature subsets of mouse and human NK cells. We show that Blimp1 is required for NK-cell maturation and homeostasis and for regulating their proliferative potential. It is also essential for high granzyme B expression, but not for most cytokine production and cytotoxicity. Surprisingly, interferon regulatory factor 4 (IRF4) and B-cell lymphoma 6 (Bcl6), 2 transcription factors crucial for the regulation of Blimp1 in B and T cells, are largely dispensable for Blimp1 expression in NK cells. T-bet deficiency, however, leads to attenuated Blimp1 expression. We have identified NK cells as the first hematopoietic cell type in which the IRF4-Blimp1-Bcl6 regulatory axis is not in operation, highlighting the distinct nature of the NK-cell gene-regulatory network.


2013 ◽  
Vol 72 (Suppl 1) ◽  
pp. A78.1-A78
Author(s):  
Silke Frey ◽  
Anja Derer ◽  
Maria-Elena Messbacher ◽  
Serena Bugatti ◽  
D Baeten ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3241-3241
Author(s):  
Minsuk Kwon ◽  
Eui-Cheol Shin ◽  
Yoon Seok Choi

Programmed cell death (PD)-1/PD-Ligand 1(PD-L1) blockade that reinvigorates exhausted T cells has been approved for the treatment of various solid tumors and hematological malignancies. However, in a clinical trial of multiple myeloma (MM) patients, anti-PD-1 monotherapy did not result in a clinical response. Furthermore, clinical trials of combining PD-1 blockade with immunomodulatory drugs or anti-CD38 monoclonal antibody failed to demonstrate clinical benefits in MM patients. To overcome the limitation of anti-PD-1 therapy in MM, the phenotype and differentiation of CD8+ T cells need to be characterized in the bone marrow (BM) of MM patients, particularly by analyzing myeloma antigen-specific CD8+ T cells. In addition, the role of immunosuppressive factors abundant in the MM microenvironment should be considered, including TGF-β. First, we confirmed the upregulation of PD-1 and PD-L1 expression in CD8+ T cells and myeloma cells, respectively, from the BM of MM patients. PD-1-expressing CD8+ T cells from the BM of MM patients co-expressed other checkpoint inhibitory receptors including Tim-3, LAG-3, and TIGIT. We also investigated the expression of T-cell transcription factors, such as T-bet, and EOMES, which are related to T-cell differentiation. In BM from MM patients, PD-1+CD8+ T cells had a higher percentage of EomeshiT-betlo cells than PD-1-CD8+ T cells. These data demonstrate that PD-1-expressing CD8+ T cells from the BM of MM patients exhibit a terminally differentiated phenotype with co-expression of multiple immune checkpoint inhibitory receptors. These results were also observed in BM CD8+ T cells specific to myeloma antigens NY-ESO-1 and HM1.24. Next, we investigated proliferation and cytokine production of BM CD8+ T cells from MM patients. BM CD8+ T cells from MM patients exhibited reduced proliferation and cytokine production upon T cell receptor (TCR) stimulation, compared to BM CD8+ T cells from other control group such as of undetermined significance. However, both anti-PD-1 alone and combined blockade of PD-1 with other immune checkpoint receptors, such as Tim-3, Lag-3, or TIGIT, did not increase the proliferation of BM CD8+ T cells from MM patients. Likewise, anti-PD-1 treatment failed to induce reinvigoration of BM CD8+ T cells stimulated with HLA-A*0201-restricted myeloma antigen peptides, including NY-ESO-1157-165 and HM1.2422-30 peptides. These data demonstrate that blocking PD-1 is not sufficient to restore the function of BM CD8+ T cells from MM patients. It has been known that TGF-β, which is actively secreted by malignant plasma cells and BM stromal cells, can inhibit T-cell responses. We confirmed that the major source of TGF- β1 is plasma cells including myeloma cells among BMMCs from MM patients, and the number of TGF- β1-producing plasma cells, including myeloma cells, is increased in the BM of MM patients. We investigated whether blocking TGF-β signaling enhances reinvigoration of BM CD8+ T cells from MM patients. The combined blockade of PD-1 and TGF- β significantly increased the proliferation of BM CD8+ T cells from MM patients in the presence of TCR stimulation. The production of IFN-γ and TNF by BM CD8+ T cells was also rescued by combined blockade of PD-1 and TGF-β. Moreover, combination of anti-PD-1 antibody and TGF-β inhibitors increased proliferative responses of BM CD8+ T cells from HLA-A2+ MM patients stimulated with a mixture of HLA-A*0201-restricted myeloma antigen peptides (NY-ESO-1157-165 and HM1.2422-30 peptides). Thus, PD-1 blockade reinvigorates BM CD8+ T cells from MM patients in the presence of TGF-β inhibitors. Taken together, BM CD8+ T cells and myeloma antigen-specific CD8+ T cells express increased levels of PD-1 and have a terminally exhausted phenotype in MM patients. Under TGF-β inhibition, anti-PD-1 reinvigorates BM CD8+ T cells from MM patients, but PD-1 blockade alone does not restore the function of BM CD8+ T cells. Blocking both TGF-β and PD-1 can be a promising therapeutic strategy for the treatment of MM. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Dale E. Bockman ◽  
L. Y. Frank Wu ◽  
Alexander R. Lawton ◽  
Max D. Cooper

B-lymphocytes normally synthesize small amounts of immunoglobulin, some of which is incorporated into the cell membrane where it serves as receptor of antigen. These cells, on contact with specific antigen, proliferate and differentiate to plasma cells which synthesize and secrete large quantities of immunoglobulin. The two stages of differentiation of this cell line (generation of B-lymphocytes and antigen-driven maturation to plasma cells) are clearly separable during ontogeny and in some immune deficiency diseases. The present report describes morphologic aberrations of B-lymphocytes in two diseases in which second stage differentiation is defective.


Author(s):  
Hannah R. Brown ◽  
Tammy L. Donato ◽  
Halldor Thormar

Measles virus specific immunoglobulin G (IgG) has been found in the brains of patients with subacute sclerosing panencephalitis (SSPE), a slowly progressing disease of the central nervous system (CNS) in children. IgG/albumin ratios indicate that the antibodies are synthesized within the CNS. Using the ferret as an animal model to study the disease, we have been attempting to localize the Ig's in the brains of animals inoculated with a cell associated strain of SSPE. In an earlier report, preliminary results using Protein A conjugated to horseradish peroxidase (PrAPx) (Dynatech Diagnostics Inc., South Windham, ME.) to detect antibodies revealed the presence of immunoglobulin mainly in antibody-producing plasma cells in inflammatory lesions and not in infected brain cells.In the present experiment we studied the brain of an SSPE ferret with neutralizing antibody titers of 1:1024 in serum and 1:512 in CSF at time of sacrifice 7 months after i.c. inoculation with SSPE measles virus-infected cells. The animal was perfused with saline and portions of the brain and spinal cord were immersed in periodate-lysine-paraformaldehyde (P-L-P) fixative. The ferret was not perfused with fixative because parts of the brain were used for virus isolation.


Author(s):  
Amreek Singh ◽  
Judith M. McLaren ◽  
Onkar S. Atwal ◽  
Peter Eyre

Introduction3-methylindole (MI), a rumen metabolite of the amino acid L-tryptophan, has been shown to produce bovine pulmonary edema and emphysema. The airways contain free and exfoliated cells. A morphologic analysis of these cells may complement the understanding of the mechanism of lung edema. Ultrastructure of the bronchopulmonary lavage (BL) cells 24 h following MI oral administration to calves is described in this experiment. The 12 hours post-treatment results were described earlier.Materials and MethodsTwo Holstein-Friesian calves were each administered an oral dose of 0.2 g MI/Kg body weight and another two calves served as controls. The animals were euthanized with sodium pentabarbitol 24 h after receiving the compound. The lungs and trachea were removed and 0.1 M sodium phosphate buffered saline was infused into the lungs through the trachea. Glutaraldehyde fixative was added to the recovered BL fluid so as to form a 1% solution. The fluid was centrifuged and the resulting cell pellet was suspended in the buffer. The procedures were repeated on the suspension; the pellet was post-fixed in osmium tetroxide and was processed by conventional methods of section preparations for TEM examination. Lung samples from caudal lobes were fixed in 1.5% glutaraldehyde to obtain tissue sections for TEM.Results and DiscussionPulmonary alveolar macrophages (AM), neutrophils, ciliated epithelial cells, globule leukocytes and plasma cells were recovered from the BL fluid of the control and Mi-administered calves. Ciliated cells and globule leukocytes could not be harvested from the controls. The AM obtained from the treated calves (Fig. 1) in comparison with similar cells from the controls were larger, and contained large membrane-limited inclusions (phagolysosomes). There was a remarkable similarity between the lavaged AM and the AM studied in thin sections of lung (cf. Fig. 1 and Fig. 2). The neutrophil was the second most abundant cell type retrieved from the lavage fluid from the calves of control or treated group. Except for scanty pseudopodia in the neutrophils obtained from the Mi-receiving calves, the cells appeared unaltered (Fig. 3). Ciliated cells were abundant in the BL fluid of Mi-ingesting calves. A heterogeneous collection of vesicles filled the ciliated cell cytoplasm (Fig. 3). Globule leukocytes were commonly observed among BL cells of treated calves. The globule leukocytes were ca. 15 μm in diameter and contained round or elliptical nuclei with conspicuous nucleoli. The cytoplasmic granules, which are a prominent feature of globule leukocytes, were electron-opaque and had a variable diameter (0.5-3.0 μm). A one-line account of globule leukocytes in the bronchi of steers administered MI has appeared. Plasma cells were rare. Ultrastructure of BL cells is compatible with their response to chemical insult by MI.


Author(s):  
S.L. Asa ◽  
K. Kovacs ◽  
J. M. Bilbao ◽  
R. G. Josse ◽  
K. Kreines

Seven cases of lymphocytic hypophysitis in women have been reported previously in association with various degrees of hypopituitarism. We report two pregnant patients who presented with mass lesions of the sella turcica, clinically mimicking pituitary adenoma. However, pathologic examination revealed extensive infiltration of the anterior pituitary by lymphocytes and plasma cells with destruction of the gland. To our knowledge, the ultrastructural features of lymphocytic hypophysitis have not been studied so far.For transmission electron microscopy, tissue from surgical specimens was fixed in glutaraldehyde, postfixed in OsO4, dehydrated and embedded in epoxy-resin. Ultrathin sections were stained with uranyl acetate and lead citrate and examined with a Philips 300 electron microscope.Electron microscopy revealed adenohypophysial cells of all types exhibiting varying degrees of injury. In the areas of most dense inflammatory cell infiltration pituitary cells contained large lysosomal bodies fusing with secretory granules (Fig. 1), as well as increased numbers of swollen mitochondria, indicating oncocytic transformation (Fig. 2).


Sign in / Sign up

Export Citation Format

Share Document