scholarly journals p32 promotes melanoma progression and metastasis by targeting EMT markers, Akt/PKB pathway, and tumor microenvironment

2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Sunita Sinha ◽  
Satyendra Kumar Singh ◽  
Nitish Jangde ◽  
Rashmi Ray ◽  
Vivek Rai

AbstractMelanoma originates from melanin-producing cells called melanocytes. Melanoma poses a great risk because of its rapid ability to spread and invade new organs. Cellular metastasis involves alteration in the gene expression profile and their transformation from epithelial to mesenchymal state. Despite of several advances, metastatic melanoma being a key cause of therapy failure and mortality remains poorly understood. p32 has been found to be involved in various physiological and pathophysiological conditions. However, the role of p32 in melanoma progression and metastasis remains underexplored. Here, we identify the role of p32 in the malignancy of both murine and human melanoma. p32 knockdown leads to reduced cell proliferation, migration, and invasion in murine and human melanoma cells. Furthermore, p32 promotes in vitro tumorigenesis, inducing oncogenes and EMT markers. Mechanistically, we show p32 regulates tumorigenic and metastatic properties through the Akt/PKB signaling pathway in both murine and human melanoma. Furthermore, p32 silencing attenuates melanoma tumor progression and lung metastasis in vivo, modulating the tumor microenvironment by inhibiting the angiogenesis, infiltration of macrophages, and leukocytes in mice. Taken together, our findings identify that p32 drives melanoma progression, metastasis, and regulates the tumor microenvironment. p32 can be a target of a novel therapeutic approach in the regulation of melanoma progression and metastasis.

2021 ◽  
Vol 20 ◽  
pp. 153303382199528
Author(s):  
Qing Lv ◽  
Qinghua Xia ◽  
Anshu Li ◽  
Zhiyong Wang

This study was performed to investigate the role of interleukin-1 receptor accessory protein (IL1RAP) in stomach carcinoma in vitro and in vivo, determine whether IL1RAP knockdown could regulate the development of stomach carcinoma, and elucidate the relationship between IL1RAP knockdown and inflammation by tumor microenvironment-related inflammatory factors in stomach carcinoma. We first used TCGA and GEPIA systems to predict the potential function of IL1RAP. Second, western blot and RT-PCR were used to analyze the expression, or mRNA level, of IL1RAP at different tissue or cell lines. Third, the occurrence and development of stomach carcinoma in vitro and in vivo were observed by using IL1RAP knockdown lentivirus. Finally, the inflammation of stomach carcinoma in vitro and in vivo was observed. Results show that in GEPIA and TCGA systems, IL1RAP expression in STAD tumor tissue was higher than normal, and high expression of IL1RAP in STAD patients had a worse prognostic outcome. Besides, GSEA shown IL1RAP was negative correlation of apopopsis, TLR4 and NF-κB signaling pathway. We also predicted that IL1RAP may related to IL-1 s, IL-33, and IL-36 s in STAD. The IL1RAP expression and mRNA level in tumor, or MGC803, cells were increased. Furthermore, IL1RAP knockdown by lentivirus could inhibit stomach carcinoma development in vitro and in vivo through weakening tumor cell proliferation, migration, invasion, therefore reducing tumor volume, weight, and biomarker levels, and increasing apoptotic level. Finally, we found IL1RAP knockdown could increase inflammation of tumor microenvironment-related inflammatory factors of stomach carcinoma, in vitro and in vivo. Our study demonstrates that IL1RAP is possibly able to regulate inflammation and apoptosis in stomach carcinoma. Furthermore, TLR4, NF-κB, IL-1 s, IL-33, and IL-36 s maybe the downstream target factor of IL1RAP in inflammation. These results may provide a new strategy for stomach carcinoma development by regulating inflammation.


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 1749-1761
Author(s):  
Xin Cao ◽  
Xianfeng Meng ◽  
Peng Fu ◽  
Lin Wu ◽  
Zhen Yang ◽  
...  

Abstract Osteosarcoma (OS) is a highly metastatic primary malignant tumor. CircRNA hsa_circ_0028173 (circATP2A2) has been uncovered to be related to the advancement of OS. However, the biological role of circATP2A2 in OS has not been validated. circATP2A2 and MYH9 were upregulated while miR-335-5p was downregulated in OS. OS patients with high circATP2A2 expression displayed a shorter overall survival and the area under curve of circATP2A2 was 0.77, manifesting that circATP2A2 might be a diagnostic and prognostic biomarker. circATP2A2 silencing repressed OS cell proliferation and glycolysis in vivo and constrained OS cell proliferation, glycolysis, migration, and invasion in vitro. circATP2A2 regulated MYH9 expression through sponging miR-335-5p. MiR-335-5p inhibitor reversed the repressive effect of circATP2A2 knockdown on OS cell malignancy and glycolysis. MYH9 overexpression overturned miR-335-5p upregulation-mediated OS cell malignancy and glycolysis. circATP2A2 accelerated OS cell malignancy and glycolysis through upregulating MYH9 via sponging miR-335-5p, offering a promising target for OS treatment.


Author(s):  
Mohammad H. Rashid ◽  
Thaiz F. Borin ◽  
Roxan Ara ◽  
Raziye Piranlioglu ◽  
Bhagelu R. Achyut ◽  
...  

AbstractMyeloid-derived suppressor cells (MDSCs) are an indispensable component of the tumor microenvironment (TME), and our perception regarding the role of MDSCs in tumor promotion is attaining extra layer of intricacy in every study. In conjunction with MDSC’s immunosuppressive and anti-tumor immunity, they candidly facilitate tumor growth, differentiation, and metastasis in several ways that yet to be explored. Alike any other cell types, MDSCs also release a tremendous amount of exosomes or nanovesicles of endosomal origin and partake in intercellular communications by dispatching biological macromolecules. There has not been any experimental study done to characterize the role of MDSCs derived exosomes (MDSC exo) in the modulation of TME. In this study, we isolated MDSC exo and demonstrated that they carry a significant amount of proteins that play an indispensable role in tumor growth, invasion, angiogenesis, and immunomodulation. We observed higher yield and more substantial immunosuppressive potential of exosomes isolated from MDSCs in the primary tumor area than those are in the spleen or bone marrow. Our in vitro data suggest that MDSC exo are capable of hyper activating or exhausting CD8 T-cells and induce reactive oxygen species production that elicits activation-induced cell death. We confirmed the depletion of CD8 T-cells in vivo by treating the mice with MDSC exo. We also observed a reduction in pro-inflammatory M1-macrophages in the spleen of those animals. Our results indicate that immunosuppressive and tumor-promoting functions of MDSC are also implemented by MDSC-derived exosomes which would open up a new avenue of MDSC research and MDSC-targeted therapy.


2021 ◽  
Author(s):  
Shenshuo Gao ◽  
Zhikai Zhang ◽  
Xubin Wang ◽  
Yan Ma ◽  
Chensheng Li ◽  
...  

Abstract Background: Gastric cancer (GC) is one of the most common malignancies, and more and more evdiences show that the pathogenesis is regulated by various miRNAs.In this study, we investigated the role of miR-875 in GC. Methods:The expression of miR-875-5p was detected in human GC specimens and cell lines by miRNA RT-PCR. The effect of miR-875-5p on GC proliferation was determined by CCK-8 proliferation assay and EDU assay. Migration and invasion were examined by transwell migration and invasion assay and wound healing assay. The interaction between miR-875-5p and its target gene USF2 was verified by a dual luciferase reporter assay. The effects of miR-875-5p in vivo were studied in xenograft nude mice models.Related proteins were detected by Western blot.Results:The results showed that miR-875-5p inhibited the proliferation, migration and invasion of gastric cancer cells in vitro, and inhibited tumorigenesis in vivo. USF2 proved to be a direct target of miR-875-5p. Knockdown of USF2 partially counteracts the effects of miR-875-5p inhibitors.Overexpression of miR-875-5p can inhibit proliferation, migration, and invasion through the TGF-β signaling pathway by down-regulation of USF2 in GC, providing a new research direction for the diagnosis and targeted therapy of GC.Conclusions: MiR-875-5pcan inhibited the progression of GC by directly targeting USF2 and negatively regulating TGF-β signaling pathway.In the future, miR-875-5p is expected to be used as a potential therapeutic target for GC therapy.


2020 ◽  
Author(s):  
Hui Guo ◽  
Jianping Zou ◽  
Ling Zhou ◽  
Yan He ◽  
Miao Feng ◽  
...  

Abstract Background:Nucleolar and spindle associated protein (NUSAP1) is involved in tumor initiation, progression and metastasis. However, there are limited studies regarding the role of NUSAP1 in gastric cancer (GC). Methods: The expression profile and clinical significance of NUSAP1 in GC were analysed in online database using GEPIA, Oncomine and KM plotter, which was further confirmed in clinical specimens.The functional role of NUSAP1 were detected utilizing in vitro and in vivo assays. Western blotting, qRT-PCR, the cycloheximide-chase, immunofluorescence staining and Co-immunoprecipitaion (Co-IP) assays were performed to explore the possible molecular mechanism by which NUSAP1 stabilizes YAP protein. Results:In this study, we found that the expression of NUSAP1 was upregulated in GC tissues and correlates closely with progression and prognosis. Additionally, abnormal NUSAP1 expression promoted malignant behaviors of GC cells in vitro and in a xenograft model. Mechanistically, we discovered that NUSAP1 physically interacts with YAP and furthermore stabilizes YAP protein expression, which induces the transcription of Hippo pathway downstream target genes. Furthermore, the effects of NUSAP1 on GC cell growth, migration and invasion were mainly mediated by YAP. Conclusions:Our data demonstrates that the novel NUSAP1-YAP axis exerts an critical role in GC tumorigenesis and progression, and therefore could provide a novel therapeutic target for GC treatment.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jing Chen ◽  
Cui-Cui Zhao ◽  
Fei-Ran Chen ◽  
Guo-Wei Feng ◽  
Fei Luo ◽  
...  

Background. Pancreatic cancer is a malignant tumor of the digestive tract, which is difficult to diagnose and treat due to bad early diagnosis. We aimed to explore the role of kinesin superfamily 4A (KIF4A) in pancreatic ductal adenocarcinoma (PDAC). Methods. We first used the bioinformatic website to screen the data of pancreatic cancer in TCGA, and KIF4A protein was detected among the 86 specimens of patients in our hospital combined with clinic-pathological characteristics and survival analysis. KIF4A loss-expression cell lines were established by RNA interference (RNAi). In addition, we performed in vitro cell assays to detect the changes in cell proliferation, migration, and invasion. The proteins involved in the proliferation and metastasis of cancer cells were also detected by western blot. The above results could be proved in vivo. Further, the correlation between KIF4A and CDC5L was analyzed by TCGA and IHC data. Results. We first found a high expression of KIF4A in pancreatic cancer, suggesting a role of KIF4A in the development of pancreatic cancer. KIF4A was found to be differentially expressed ( P < 0.05 ) among the 86 specimens of patients in our hospital and was significantly associated with PDAC TNM stages and tumor size. High KIF4A expression also significantly worsened overall survival (OS) and disease-free survival rate (DFS) ( P < 0.05 , respectively). In addition, cell proliferation, migration, and invasion were inhibited by the KIF4A-shRNA group compared with the control ( P < 0.05 , respectively). In the end, knockdown of KIF4A could inhibit tumor development and metastasis in vivo. Further, the positive correlation between KIF4A and CDC5L existed, and KIF4A might promote pancreatic cancer proliferation by affecting CDC5L expression. Conclusion. In conclusion, the high expression level of KIF4A in PDAC was closely related to poor clinical and pathological status, lymphatic metastasis, and vascular invasion. KIF4A might be involved in promoting the development of PDAC in vitro and in vivo, which might be a new therapeutic target of PDAC.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Olan Jackson-Weaver ◽  
Jian Wu ◽  
Yongchao Gou ◽  
Yibu Chen ◽  
Meng Li ◽  
...  

Rationale: Epicardial epithelial-to-mesenchymal trasition (EMT) is a vital process in embryonic heart development. During EMT, epicardial cells acquire migratory and invasive properties, and differentiate into new cell types, including cardiac fibroblasts and coronary smooth muscle cells. Non-histone protein methylation is an emerging modulator of cell signaling. We have recently established a role for protein arginine methyltransferase-1 (PRMT1) in TGF-β-induced EMT in cultured cells. Objective: To determine the role of PRMT1 in epicardial EMT. Methods and Results: We investigated the role of PRMT1 in epicardial EMT in mouse epicardial cells. Embryonic day 9.5 (E9.5) tamoxifen administration of WT1-Cre ERT ;PRMT1 fl/fl ;ROSA-YFP fl/fl mouse embryos was used to delete PRMT1 in the epicardium. Epicardial PRMT1 deletion led to reduced epicardial migration into the myocardium, a thinner compact myocardial layer, and dilated coronary blood vessels at E15.5. Using the epicardial cell line MEC1, we found that PRMT1 siRNA prevented the increase in mesenchymal proteins Slug and Fibronectin and the decrease in epithelial protein E-Cadherin during TGF-β treatment-induced EMT. PRMT1 siRNA also reduced the migration and invasion of MEC1 cells. We further identified that PRMT1 siRNA also increased the expression of p53, a key regulator of the Slug degradation pathway. PRMT1 siRNA increases p53 expression by decreasing p53 degradation, and shifted p53 localization to the cytoplasm. In vitro methylation assays further demonstrated that PRMT1 methylates p53. Knockdown of p53 increased Slug levels and enhanced EMT, establishing p53 as a regulator of epicardial EMT through controlling Slug expression. Furthermore, RNAseq experiments in MEC1 cells demonstrated that 40% (545/1,351) of TGF-β-induced transcriptional changes were prevented by PRMT1 siRNA. Furthermore, when p53 and PRMT1 were simultaneously knocked down, TGF-β induced transcriptional control of 37% (201/545) of these PRMT1-dependent genes was restored. Conclusions: The PRMT1-p53-Slug pathway is necessary for epicardial EMT in cultured MEC1 cells as well as in the epicardium in vivo . Epicardial PRMT1 is required for the development of compact myocardium and coronary blood vessels.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Enhui Ma ◽  
Qianqian Wang ◽  
Jinhua Li ◽  
Xinqi Zhang ◽  
Zhenjia Guo ◽  
...  

Abstract Background Prostate cancer (PCa) is a kind of malignancy occurring in the prostate gland. Substantial researches have proved the major role of long noncoding RNAs (lncRNAs) in PCa. However, the role of long intergenic non-protein coding RNA 1006 (LINC01006) in PCa has not been investigated yet. Methods RT-qPCR was used to examine the expression levels of LINC01006 and its downstream targets. The function of LINC01006 in PCa was tested by in vitro and in vivo assays. With application of RNA pull down, RNA immunoprecipitation (RIP) and luciferase reporter assays, the interaction among LINC01006, miR-34a-5p and disheveled associated activator of morphogenesis 1 (DAAM1) were verified. Results LINC01006 expression presented high in PCa cell lines. LINC01006 silencing suppressed cell proliferative, migratory, invasive capacities while accelerated apoptotic rate. Besides, LINC01006 knockdown also suppressed tumor growth and metastasis in vivo. Furthermore, miR-34a-5p, a tumor suppressor in PCa, was sponged by LINC01006. Moreover, DAAM1 was targeted by miR-34a-5p and promoted PCa progression. More intriguingly, rescue assays suggested that the inhibitory effect of LINC01006 knockdown on PCa development was offset by DAAM1 overexpression. Conclusions LINC01006 promoted PCa progression by sponging miR-34a-5p to up-regulate DAAM1, providing a novel target for PCa therapy.


Biomolecules ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1676
Author(s):  
Monserrat Olea-Flores ◽  
Juan C. Juárez-Cruz ◽  
Miriam D. Zuñiga-Eulogio ◽  
Erika Acosta ◽  
Eduardo García-Rodríguez ◽  
...  

Leptin is a hormone secreted mainly by adipocytes; physiologically, it participates in the control of appetite and energy expenditure. However, it has also been linked to tumor progression in different epithelial cancers. In this review, we describe the effect of leptin on epithelial–mesenchymal transition (EMT) markers in different study models, including in vitro, in vivo, and patient studies and in various types of cancer, including breast, prostate, lung, and ovarian cancer. The different studies report that leptin promotes the expression of mesenchymal markers and a decrease in epithelial markers, in addition to promoting EMT-related processes such as cell migration and invasion and poor prognosis in patients with cancer. Finally, we report that leptin has the greatest biological relevance in EMT and tumor progression in breast, lung, prostate, esophageal, and ovarian cancer. This relationship could be due to the key role played by the enriched tumor microenvironment in adipose tissue. Together, these findings demonstrate that leptin is a key biomolecule that drives EMT and metastasis in cancer.


2020 ◽  
Vol 21 (24) ◽  
pp. 9721
Author(s):  
Giuseppina Augimeri ◽  
Luca Gelsomino ◽  
Pierluigi Plastina ◽  
Cinzia Giordano ◽  
Ines Barone ◽  
...  

Multiple lines of evidence indicate that activation of the peroxisome proliferator-activated receptor γ (PPARγ) by natural or synthetic ligands exerts tumor suppressive effects in different types of cancer, including breast carcinoma. Over the past decades a new picture of breast cancer as a complex disease consisting of neoplastic epithelial cells and surrounding stroma named the tumor microenvironment (TME) has emerged. Indeed, TME is now recognized as a pivotal element for breast cancer development and progression. Novel strategies targeting both epithelial and stromal components are under development or undergoing clinical trials. In this context, the aim of the present review is to summarize PPARγ activity in breast TME focusing on the role of this receptor on both epithelial/stromal cells and extracellular matrix components of the breast cancer microenvironment. The information provided from the in vitro and in vivo research indicates PPARγ ligands as potential agents with regards to the battle against breast cancer.


Sign in / Sign up

Export Citation Format

Share Document