scholarly journals Natural and non-natural antioxidative compounds: potential candidates for treatment of vascular calcification

2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Chia-Ter Chao ◽  
Hsiang-Yuan Yeh ◽  
You-Tien Tsai ◽  
Pei-Huan Chuang ◽  
Tzu-Hang Yuan ◽  
...  

Abstract Vascular calcification (VC) is highly prevalent in patients with advanced age, or those with chronic kidney disease and diabetes, accounting for substantial global cardiovascular burden. The pathophysiology of VC involves active mineral deposition by transdifferentiated vascular smooth muscle cells exhibiting osteoblast-like behavior, building upon cores with or without apoptotic bodies. Oxidative stress drives the progression of the cellular phenotypic switch and calcium deposition in the vascular wall. In this review, we discuss potential compounds that shield these cells from the detrimental influences of reactive oxygen species as promising treatment options for VC. A comprehensive summary of the current literature regarding antioxidants for VC is important, as no effective therapy is currently available for this disease. We systematically searched through the existing literature to identify original articles investigating traditional antioxidants and novel compounds with antioxidant properties with regard to their effectiveness against VC in experimental or clinical settings. We uncovered 36 compounds with antioxidant properties against VC pathology, involving mechanisms such as suppression of NADPH oxidase, BMP-2, and Wnt/β-catenin; anti-inflammation; and activation of Nrf2 pathways. Only two compounds have been tested clinically. These findings suggest that a considerable opportunity exists to harness these antioxidants for therapeutic use for VC. In order to achieve this goal, more translational studies are needed.

2021 ◽  
Vol 22 (12) ◽  
pp. 6491
Author(s):  
Giulia Chinetti ◽  
Jaap G. Neels

Vascular calcification is defined as an inappropriate accumulation of calcium depots occurring in soft tissues, including the vascular wall. Growing evidence suggests that vascular calcification is an actively regulated process, sharing similar mechanisms with bone formation, implicating both inhibitory and inducible factors, mediated by osteoclast-like and osteoblast-like cells, respectively. This process, which occurs in nearly all the arterial beds and in both the medial and intimal layers, mainly involves vascular smooth muscle cells. In the vascular wall, calcification can have different clinical consequences, depending on the pattern, localization and nature of calcium deposition. Nuclear receptors are transcription factors widely expressed, activated by specific ligands that control the expression of target genes involved in a multitude of pathophysiological processes, including metabolism, cancer, inflammation and cell differentiation. Some of them act as drug targets. In this review we describe and discuss the role of different nuclear receptors in the control of vascular calcification.


2020 ◽  
Vol 78 (10) ◽  
pp. 642-650
Author(s):  
Felipe Torres PACHECO ◽  
Luiz Celso Hygino da CRUZ JUNIOR ◽  
Igor Gomes PADILHA ◽  
Renato Hoffmann NUNES ◽  
Antônio Carlos Martins MAIA JUNIOR ◽  
...  

ABSTRACT Intracranial vessel wall imaging plays an increasing role in diagnosing intracranial vascular diseases. With the growing demand and subsequent increased use of this technique in clinical practice, radiologists and neurologists should be aware of the choices in imaging parameters and how they affect image quality, clinical indications, methods of assessment, and limitations in the interpretation of these images. Due to the improvement of the MRI techniques, the possibility of accurate and direct evaluation of the abnormalities in the arterial vascular wall (vessel wall imaging) has evolved, adding substantial data to diagnosis when compared to the indirect evaluation based on conventional flow analyses. Herein, the authors proposed a comprehensive approach of this technique reinforcing appropriated clinical settings to better use intracranial vessel wall imaging.


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1222
Author(s):  
Domitilla Mandatori ◽  
Letizia Pelusi ◽  
Valeria Schiavone ◽  
Caterina Pipino ◽  
Natalia Di Pietro ◽  
...  

Osteoporosis (OP) and vascular calcification (VC) represent relevant health problems that frequently coexist in the elderly population. Traditionally, they have been considered independent processes, and mainly age-related. However, an increasing number of studies have reported their possible direct correlation, commonly defined as “bone-vascular crosstalk”. Vitamin K2 (VitK2), a family of several natural isoforms also known as menaquinones (MK), has recently received particular attention for its role in maintaining calcium homeostasis. In particular, VitK2 deficiency seems to be responsible of the so-called “calcium paradox” phenomenon, characterized by low calcium deposition in the bone and its accumulation in the vessel wall. Since these events may have important clinical consequences, and the role of VitK2 in bone-vascular crosstalk has only partially been explained, this review focuses on its effects on the bone and vascular system by providing a more recent literature update. Overall, the findings reported here propose the VitK2 family as natural bioactive molecules that could be able to play an important role in the prevention of bone loss and vascular calcification, thus encouraging further in-depth studies to achieve its use as a dietary food supplement.


2021 ◽  
Vol 18 ◽  
Author(s):  
Damilare Rotimi ◽  
Jennifer Chidubem Amanze ◽  
Adebola Busola Ojo ◽  
Matthew Iyobhebhe ◽  
Tobiloba Christiana Elebiyo ◽  
...  

Abstract: The use of herbal remedies for medicinal purposes is becoming more popular around the world. As a result, plants have become viable treatment options for a variety of diseases. Garcinia kola (bitter kola) is a perennially grown plant in the Guttiferae family that has been evaluated and reported to have numerous health-promoting properties. Kolaviron is a biflavanoid and major phytochemical found in Garcinia kola that includes Garcinia Biflavanoid-1 (GB-1), kolaflavanone, and Garcinia Biflavanoid-2 (GB-2). It is obtained as a fraction extracted from Garcinia kola. Kolaviron's pharmacological properties include anti-inflammatory, anti-spasmodic, ameliorative, anti-asthmatic, anti-cancer, anti-malarial, hepatoprotective, antioxidant, anti-atherogenic, neuroprotective, anti-diabetic, and anti-amnesic properties. Kolaviron is recommended for use in clinical settings because it has been shown to have a high therapeutic efficacy in clinical trials. The purpose of this review is to assess the therapeutic efficacy of kolaviron.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Jin-Rui Chang ◽  
Yue-Long Hou ◽  
Wei-Wei Lu ◽  
Jin-Sheng Zhang ◽  
Yan-Rong Yu ◽  
...  

Vascular calcification (VC) is highly associated with increased morbidity and mortality in patients with advanced chronic kidney disease(CKD). We previously reported that paracrine/autocrine factor intermedin (IMD) could protect against VC. In the present study we assessed the hypothesis that IMD inhibits VC by upregulating klotho protein. VC in CKD rat was induced by 5/6 nephrectomy plus vitamin D 3 administration and vascular smooth muscle cells (VSMCs) calcification was induced by calcifying media containing β -glycerophosphate and CaCl 2 . IMD (100 ng kg -1 h -1 ) was systemically administered by a mini-osmotic pump. CKD rat aortas showed lower IMD content and increased expression of its receptors (calcitonin receptor-like receptor,CRLR/receptor activity-modifying protein 3, RAMP3), along with increased aortic alkaline phosphatase (ALP) activity and calcium deposition. In vivo administration of IMD significantly reduced aortic ALP activity and calcium deposition in CKD rats when compared with vehicle treatment, which was further confirmed in cultured VSMCs. Concurrently, the loss of smooth muscle lineage markers and klotho protein in aortas was rescued by administering IMD to CKD rats with VC. However, the inhibitory effects of IMD on VC were abolished upon pre-treatment with small interfering RNA to reduce klotho. Moreover, the increased effects of IMD on klotho were abolished upon pretreatment with small interfering RNA to reduce its receptors or with PKA inhibitor H89. These results demonstrated that IMD attenuates VC by upregulating klotho via CRLR/RAMP3-cAMP/PKA signaling pathway in rat with CKD. IMD is an important paracrine/autocrine protective factor for VC.


2021 ◽  
Vol 8 ◽  
Author(s):  
Kaylee Bundy ◽  
Jada Boone ◽  
C. LaShan Simpson

Cardiovascular disease is a worldwide epidemic and considered the leading cause of death globally. Due to its high mortality rates, it is imperative to study the underlying causes and mechanisms of the disease. Vascular calcification, or the buildup of hydroxyapatite within the arterial wall, is one of the greatest contributors to cardiovascular disease. Medial vascular calcification is a predictor of cardiovascular events such as, but not limited to, hypertension, stiffness, and even heart failure. Vascular smooth muscle cells (VSMCs), which line the arterial wall and function to maintain blood pressure, are hypothesized to undergo a phenotypic switch into bone-forming cells during calcification, mimicking the manner by which mesenchymal stem cells differentiate into osteoblast cells throughout osteogenesis. RunX2, a transcription factor necessary for osteoblast differentiation and a target gene of the Wnt signaling pathway, has also shown to be upregulated when calcification is present, implicating that the Wnt cascade may be a key player in the transdifferentiation of VSMCs. It is important to note that the phenotypic switch of VSMCs from a healthy, contractile state to a proliferative, synthetic state is necessary in response to the vascular injury surrounding calcification. The lingering question, however, is if VSMCs acquire this synthetic phenotype through the Wnt pathway, how and why does this signaling occur? This review seeks to highlight the potential role of the canonical Wnt signaling pathway within vascular calcification based on several studies and further discuss the Wnt ligands that specifically aid in VSMC transdifferentiation.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 737 ◽  
Author(s):  
Hyun-Joo Park ◽  
Yeon Kim ◽  
Mi-Kyoung Kim ◽  
Jae Joon Hwang ◽  
Hyung Joon Kim ◽  
...  

Vascular calcification is the pathological deposition of calcium/phosphate in the vascular system and is closely associated with cardiovascular morbidity and mortality. Here, we investigated the role of gastrin-releasing peptide (GRP) in phosphate-induced vascular calcification and its potential regulatory mechanism. We found that the silencing of GRP gene and treatment with the GRP receptor antagonist, RC-3095, attenuated the inorganic phosphate-induced calcification of vascular smooth muscle cells (VSMCs). This attenuation was caused by inhibiting phenotype change, apoptosis and matrix vesicle release in VSMCs. Moreover, the treatment with RC-3095 effectively ameliorated phosphate-induced calcium deposition in rat aortas ex vivo and aortas of chronic kidney disease in mice in vivo. Therefore, the regulation of the GRP-GRP receptor axis may be a potential strategy for treatment of diseases associated with excessive vascular calcification.


2019 ◽  
Vol 20 (17) ◽  
pp. 4202 ◽  
Author(s):  
Ye-Bo Zhou ◽  
Hong Zhou ◽  
Li Li ◽  
Ying Kang ◽  
Xu Cao ◽  
...  

Vascular calcification can be enhanced by hyperglycemia. Elastin loss in tunica media promotes the osteogenic transformation of smooth muscle cells (SMCs) and involves arterial medial calcification (AMC) that is associated with a high incidence of cardiovascular risk in patients with type 2 diabetes. Here, we tested whether hydrogen sulfide (H2S), an endogenous gaseous mediator, can prevent elastin loss and attenuate calcification induced by high glucose in SMCs. Calcification was induced by high glucose (4500 mg/L) in human aortic SMCs (HASMCs) under the condition of calcifying medium containing 10 mM β-glycerophosphate (β-GP). The experiments showed that NaHS (an H2S donor, 100 μM) mitigated the calcification of HASMCs treated with high glucose by decreasing calcium and phosphorus levels, calcium deposition and ALP activity and inhibited osteogenic transformation by increasing SMα-actin and SM22α, two phenotypic markers of smooth muscle cells, and decreasing core binding factor α-1 (Cbfα-1), a key factor in bone formation, protein expressions in HASMCs. Moreover, NaHS administration inhibited the activation of Stat3, cathepsin S (CAS) activity and its expression, but increased the level of elastin protein. Pharmacological inhibition or gene silencing Stat3 not only reversed elastin loss, but also attenuated CAS expression. Inhibition of CAS alleviated, while CAS overexpression exacerbated, elastin loss. Interestingly, overexpression of wild type (WT)-Stat3, but not its mutant C259S, elevated CAS protein expression and reduced elastin level. Moreover, NaHS induced S-sulfhydration in WT, but not in the C259S Stat3. These data suggest that H2S may directly regulate Cys259 residue in Stat3 and then impair its signaling function. Our data indicate that H2S may attenuate vascular calcification by upregulating elastin level through the inhibition of Stat3/CAS signaling.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Kenichi Sakamoto ◽  
Kyoko Kuno ◽  
Minoru Takemoto ◽  
Peng He ◽  
Takahiro Ishikawa ◽  
...  

Diabetic nephropathy (DN) is a leading cause of end-stage kidney disease; however, there are few treatment options. Inflammation plays a crucial role in the initiation and/or progression of DN. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide, which was originally isolated from the ovine hypothalamus and reportedly has diverse biological functions. It has been reported that PACAP has renoprotective effects in different models of kidney pathology. However, the specific cell types within the kidney that are protected by PACAP have not yet been reported. In this study, we localized VPAC1, one of the PACAP receptors, to glomerular podocytes, which also reportedly has crucial roles not only in glomerular physiology but also in pathology. PACAP was effective in the downregulation of proinflammatory cytokines, such as monocyte chemoattractant protein-1 (MCP-1) and interleukin-6, which had been induced by the activation of toll-like receptor (TLR) with lipopolysaccharide. PACAP also had downregulated the expression of MCP-1 through the protein kinase A signaling pathway; this led to the attenuation of the activation of extracellular signal-regulated kinase and nuclear factor-kappa B signaling. Our results suggested that PACAP could be a possible treatment option for DN through the use of anti-inflammation effects on glomerular podocytes.


2018 ◽  
Vol 46 (4) ◽  
pp. 1305-1316 ◽  
Author(s):  
Trang T. D. Luong ◽  
Nadeshda Schelski ◽  
Beate Boehme ◽  
Manousos Makridakis ◽  
Antonia Vlahou ◽  
...  

Background/Aims: Fibulin-3, an extracellular matrix glycoprotein, inhibits vascular oxidative stress and remodeling in hypertension. Oxidative stress is prevalent in chronic kidney disease (CKD) patients and is an important mediator of osteo-/chondrogenic transdifferentiation and calcification of vascular smooth muscle cells (VSMCs) during hyperphosphatemia. Therefore, the present study explored the effects of Fibulin-3 on phosphate-induced vascular calcification. Methods: Experiments were performed in primary human aortic smooth muscle cells (HAoSMCs) treated with control or with phosphate without or with additional treatment with recombinant human Fibulin-3 protein or with hydrogen peroxide as an exogenous source of oxidative stress. Results: Treatment with calcification medium significantly increased calcium deposition in HAoSMCs, an effect significantly blunted by additional treatment with Fibulin-3. Moreover, phosphate-induced alkaline phosphatase activity and mRNA expression of osteogenic and chondrogenic markers MSX2, CBFA1, SOX9 and ALPL were all significantly reduced by addition of Fibulin-3. These effects were paralleled by similar regulation of oxidative stress in HAoSMCs. Phosphate treatment significantly up-regulated mRNA expression of the oxidative stress markers NOX4 and CYBA, down-regulated total antioxidant capacity and increased the expression of downstream effectors of oxidative stress PAI-1, MMP2 and MMP9 as well as BAX/BLC2 ratio in HAoSMCs, all effects blocked by additional treatment with Fibulin-3. Furthermore, the protective effects of Fibulin-3 on phosphate-induced osteogenic and chondrogenic markers expression in HAoSMCs were reversed by additional treatment with hydrogen peroxide. Conclusions: Fibulin-3 attenuates phosphate-induced osteo-/ chondrogenic transdifferentiation and calcification of VSMCs, effects involving inhibition of oxidative stress. Up-regulation or supplementation of Fibulin-3 may be beneficial in reducing the progression of vascular calcification during hyperphosphatemic conditions such as CKD.


Sign in / Sign up

Export Citation Format

Share Document