scholarly journals Mechanisms of muscle atrophy and hypertrophy: implications in health and disease

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Roberta Sartori ◽  
Vanina Romanello ◽  
Marco Sandri

AbstractSkeletal muscle is the protein reservoir of our body and an important regulator of glucose and lipid homeostasis. Consequently, the growth or the loss of muscle mass can influence general metabolism, locomotion, eating and respiration. Therefore, it is not surprising that excessive muscle loss is a bad prognostic index of a variety of diseases ranging from cancer, organ failure, infections and unhealthy ageing. Muscle function is influenced by different quality systems that regulate the function of contractile proteins and organelles. These systems are controlled by transcriptional dependent programs that adapt muscle cells to environmental and nutritional clues. Mechanical, oxidative, nutritional and energy stresses, as well as growth factors or cytokines modulate signaling pathways that, ultimately, converge on protein and organelle turnover. Novel insights that control and orchestrate such complex network are continuously emerging and will be summarized in this review. Understanding the mechanisms that control muscle mass will provide therapeutic targets for the treatment of muscle loss in inherited and non-hereditary diseases and for the improvement of the quality of life during ageing.

2010 ◽  
Vol 298 (6) ◽  
pp. C1291-C1297 ◽  
Author(s):  
Marco Sandri

Loss of muscle mass aggravates a variety of diseases, and understanding the molecular mechanisms that control muscle wasting is critical for developing new therapeutic approaches. Weakness is caused by loss of muscle proteins, and recent studies have underlined a major role for the autophagy-lysosome system in regulating muscle mass. Some key components of the autophagy machinery are transcriptionally upregulated during muscle wasting, and their induction precedes muscle loss. However, it is unclear whether autophagy is detrimental, causing atrophy, or beneficial, promoting survival during catabolic conditions. This review discusses recent findings on signaling pathways regulating autophagy.


Author(s):  
Eva Pigna ◽  
Krizia Sanna ◽  
Dario Coletti ◽  
Zhenlin Li ◽  
Ara Parlakian ◽  
...  

Physiological autophagy plays a crucial role in the regulation of muscle mass and metabolism, while the excessive induction or the inhibition of the autophagic flux contributes to the progression of several diseases. Autophagy can be activated by different stimuli, including cancer, exercise, caloric restriction and denervation. The latter leads to muscle atrophy through the activation of catabolic pathways, i.e. the ubiquitin-proteasome system and autophagy. However, the kinetics of autophagy activation and the upstream molecular pathways in denervated skeletal muscle have not been reported yet. In this study, we characterized the kinetics of autophagic induction, quickly triggered by denervation, and report the Akt/mTOR axis activation. Besides, with the aim to assess the relative contribution of autophagy in neurogenic muscle atrophy, we triggered autophagy with different stimuli along with denervation, and observed that four week-long autophagic induction, by either intermitted fasting or rapamycin treatment, did not significantly affect muscle mass loss. We conclude that: i) autophagy does not play a major role in inducing muscle loss following denervation; ii) nonetheless, autophagy may have a regulatory role in denervation induced muscle atrophy, since it is significantly upregulated as early as eight hours after denervation; iii) Akt/mTOR axis, AMPK and FoxO3a are activated consistently with the progression of muscle atrophy, further highlighting the complexity of the signaling response to the atrophying stimulus deriving from denervation.


Author(s):  
Anna Ferrante ◽  
James Boyd ◽  
Sean Randall ◽  
Adrian Brown ◽  
James Semmens

ABSTRACT ObjectivesRecord linkage is a powerful technique which transforms discrete episode data into longitudinal person-based records. These records enable the construction and analysis of complex pathways of health and disease progression, and service use. Achieving high linkage quality is essential for ensuring the quality and integrity of research based on linked data. The methods used to assess linkage quality will depend on the volume and characteristics of the datasets involved, the processes used for linkage and the additional information available for quality assessment. This paper proposes and evaluates two methods to routinely assess linkage quality. ApproachLinkage units currently use a range of methods to measure, monitor and improve linkage quality; however, no common approach or standards exist. There is an urgent need to develop “best practices” in evaluating, reporting and benchmarking linkage quality. In assessing linkage quality, of primary interest is in knowing the number of true matches and non-matches identified as links and non-links. Any misclassification of matches within these groups introduces linkage errors. We present efforts to develop sharable methods to measure linkage quality in Australia. This includes a sampling-based method to estimate both precision (accuracy) and recall (sensitivity) following record linkage and a benchmarking method - a transparent and transportable methodology to benchmark the quality of linkages across different operational environments. ResultsThe sampling-based method achieved estimates of linkage quality that were very close to actual linkage quality metrics. This method presents as a feasible means of accurately estimating matching quality and refining linkages in population level linkage studies. The benchmarking method provides a systematic approach to estimating linkage quality with a set of open and shareable datasets and a set of well-defined, established performance metrics. The method provides an opportunity to benchmark the linkage quality of different record linkage operations. Both methods have the potential to assess the inter-rater reliability of clerical reviews. ConclusionsBoth methods produce reliable estimates of linkage quality enabling the exchange of information within and between linkage communities. It is important that researchers can assess risk in studies using record linkage techniques. Understanding the impact of linkage quality on research outputs highlights a need for standard methods to routinely measure linkage quality. These two methods provide a good start to the quality process, but it is important to identify standards and good practices in all parts of the linkage process (pre-processing, standardising activities, linkage, grouping and extracting).


2015 ◽  
Vol 308 (11) ◽  
pp. E942-E949 ◽  
Author(s):  
Chiao-nan (Joyce) Chen ◽  
Shang-Ying Lin ◽  
Yi-Hung Liao ◽  
Zhen-jie Li ◽  
Alice May-Kuen Wong

Caloric restriction (CR) attenuates age-related muscle loss. However, the underlying mechanism responsible for this attenuation is not fully understood. This study evaluated the role of energy metabolism in the CR-induced attenuation of muscle loss. The aims of this study were twofold: 1) to evaluate the effect of CR on energy metabolism and determine its relationship with muscle mass, and 2) to determine whether the effects of CR are age dependent. Young and middle-aged rats were randomized into either 40% CR or ad libitum (AL) diet groups for 14 wk. Major energy-producing pathways in muscles, i.e., glycolysis and mitochondrial oxidative phosphorylation (OXPHOS), were examined. We found that the effects of CR were age dependent. CR improved muscle metabolism and normalized muscle mass in middle-aged animals but not young animals. CR decreased glycolysis and increased the cellular dependency for OXPHOS vs. glycolysis in muscles of middle-aged rats, which was associated with the improvement of normalized muscle mass. The metabolic reprogramming induced by CR was related to modulation of pyruvate metabolism and increased mitochondrial biogenesis. Compared with animals fed AL, middle-aged animals with CR had lower lactate dehydrogenase A content and greater mitochondrial pyruvate carrier content. Markers of mitochondrial biogenesis, including AMPK activation levels and SIRT1 and COX-IV content, also showed increased levels. In conclusion, 14 wk of CR improved muscle metabolism and preserved muscle mass in middle-aged animals but not in young developing animals. CR-attenuated age-related muscle loss is associated with reprogramming of the metabolic pathway from glycolysis to OXPHOS.


Author(s):  
Evelien Gielen ◽  
David Beckwée ◽  
Andreas Delaere ◽  
Sandra De Breucker ◽  
Maurits Vandewoude ◽  
...  

Abstract Context Sarcopenia is a progressive and generalized skeletal muscle disorder associated with an increased risk of adverse outcomes such as falls, disability, and death. The Belgian Society of Gerontology and Geriatrics has developed evidence-based guidelines for the prevention and treatment of sarcopenia. This umbrella review presents the results of the Working Group on Nutritional Interventions. Objective The aim of this umbrella review was to provide an evidence-based overview of nutritional interventions targeting sarcopenia or at least 1 of the 3 sarcopenia criteria (ie, muscle mass, muscle strength, or physical performance) in persons aged ≥ 65 years. Data sources Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, the PubMed and Web of Science databases were searched for systematic reviews and meta-analyses reporting the effect of nutritional supplementation on sarcopenia or muscle mass, strength, or physical performance. Data extraction Two authors extracted data on the key characteristics of the reviews, including participants, treatment, and outcomes. Methodological quality of the reviews was assessed using the product A Measurement Tool to Assess Systematic Reviews. Three authors synthesized the extracted data and generated recommendations on the basis of an overall synthesis of the effects of each intervention. Quality of evidence was rated with the Grading of Recommendations Assessment, Development and Evaluation approach. Data analysis A total of 15 systematic reviews were included. The following supplements were examined: proteins, essential amino acids, leucine, β-hydroxy-β-methylbutyrate, creatine, and multinutrient supplementation (with or without physical exercise). Because of both the low amount and the low to moderate quality of the reviews, the level of evidence supporting most recommendations was low to moderate. Conclusions Best evidence is available to recommend leucine, because it has a significant effect on muscle mass in elderly people with sarcopenia. Protein supplementation on top of resistance training is recommended to increase muscle mass and strength, in particular for obese persons and for ≥ 24 weeks. Effects on sarcopenia as a construct were not reported in the included reviews.


2020 ◽  
Vol 21 (7) ◽  
pp. 2538 ◽  
Author(s):  
Andrey L. Karamyshev ◽  
Elena B. Tikhonova ◽  
Zemfira N. Karamysheva

Secretory proteins are synthesized in a form of precursors with additional sequences at their N-terminal ends called signal peptides. The signal peptides are recognized co-translationally by signal recognition particle (SRP). This interaction leads to targeting to the endoplasmic reticulum (ER) membrane and translocation of the nascent chains into the ER lumen. It was demonstrated recently that in addition to a targeting function, SRP has a novel role in protection of secretory protein mRNAs from degradation. It was also found that the quality of secretory proteins is controlled by the recently discovered Regulation of Aberrant Protein Production (RAPP) pathway. RAPP monitors interactions of polypeptide nascent chains during their synthesis on the ribosomes and specifically degrades their mRNAs if these interactions are abolished due to mutations in the nascent chains or defects in the targeting factor. It was demonstrated that pathological RAPP activation is one of the molecular mechanisms of human diseases associated with defects in the secretory proteins. In this review, we discuss recent progress in understanding of translational control of secretory protein biogenesis on the ribosome and pathological consequences of its dysregulation in human diseases.


Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2824 ◽  
Author(s):  
Marcos Martin-Rincon ◽  
Alberto Pérez-López ◽  
David Morales-Alamo ◽  
Ismael Perez-Suarez ◽  
Pedro de Pablos-Velasco ◽  
...  

The loss of skeletal muscle mass with energy deficit is thought to be due to protein breakdown by the autophagy-lysosome and the ubiquitin-proteasome systems. We studied the main signaling pathways through which exercise can attenuate the loss of muscle mass during severe energy deficit (5500 kcal/day). Overweight men followed four days of caloric restriction (3.2 kcal/kg body weight day) and prolonged exercise (45 min of one-arm cranking and 8 h walking/day), and three days of control diet and restricted exercise, with an intra-subject design including biopsies from muscles submitted to distinct exercise volumes. Gene expression and signaling data indicate that the main catabolic pathway activated during severe energy deficit in skeletal muscle is the autophagy-lysosome pathway, without apparent activation of the ubiquitin-proteasome pathway. Markers of autophagy induction and flux were reduced by exercise primarily in the muscle submitted to an exceptional exercise volume. Changes in signaling are associated with those in circulating cortisol, testosterone, cortisol/testosterone ratio, insulin, BCAA, and leucine. We conclude that exercise mitigates the loss of muscle mass by attenuating autophagy activation, blunting the phosphorylation of AMPK/ULK1/Beclin1, and leading to p62/SQSTM1 accumulation. This includes the possibility of inhibiting autophagy as a mechanism to counteract muscle loss in humans under severe energy deficit.


Diagnostics ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 238 ◽  
Author(s):  
Kazunori Yoh ◽  
Hiroki Nishikawa ◽  
Hirayuki Enomoto ◽  
Yoshinori Iwata ◽  
Naoto Ikeda ◽  
...  

Here we sought to clarify the prognostic impact of sarcopenia-related markers (grip strength (GS), muscle mass using bioimpedance analysis and patient quality of life as assessed by the 36-Item Short-Form Health Survey (SF36)) in patients with chronic liver diseases (CLDs, n = 411; 160 liver cirrhosis patients; median age, 64 years) on the incidence of composite hepatic events (CHEs). A GS decrease was defined as <26 kg in men and <18 kg in women, while a skeletal muscle mass index (SMI) decrease was defined as <7.0 kg/m2 in men and <5.7 kg/m2 in women based on the current guidelines. The physical and metal component summary scores on the SF36 were also included into the analysis. Sixty-two patients (15.1%) had the first incidence of CHEs. The three-year cumulative incidence rates of CHEs in patients with GS decrease or non-decrease were 24.51% and 12.44% (p = 0.0057). The three-year cumulative incidence rates of CHEs in patients with an SMI decrease or non-decrease were 19.65% and 12.99% (p = 0.0982). Multivariate analysis revealed that GS decrease (p = 0.0350) and prothrombin time (p = 0.0293) were significantly associated with the incidence of CHEs. In conclusion, GS can be an independent predictor for CHE development in patients with CLDs.


2017 ◽  
Vol 8 (5) ◽  
pp. 604-612 ◽  
Author(s):  
S. Perzel ◽  
H. Huebner ◽  
W. Rascher ◽  
C. Menendez-Castro ◽  
A. Hartner ◽  
...  

Intrauterine growth restriction (IUGR) and fetal growth restriction (FGR) are pregnancy complications associated with morbidity in later life. Despite a growing body of evidence from current research on developmental origins of health and disease (DOHaD), little information is currently provided to parents on long-term metabolic, cardiovascular and neurologic consequences. As parents strongly rely on internet-based health-related information, we examined the quality of information on IUGR/FGR sequelae and DOHaD in webpages used by laypersons. Simulating non-clinicians experience, we entered the terms ‘IUGR consequences’ and ‘FGR consequences’ into Google and Yahoo search engines. The quality of the top search-hits was analyzed with regard to the certification through the Health On the Net Foundation (HON), currentness of cited references, while reliability of information and DOHaD-related consequences were assessed via the DISCERN Plus score (DPS). Overall the citation status was not up-to-date and only a few websites were HON-certified. The results of our analysis showed a dichotomy between the growing body of evidence regarding IUGR/FGR-related sequelae and lack of current guidelines, leaving parents without clear directions. Furthermore, detailed information on the concept of DOHaD is not provided. These findings emphasize the responsibility of the individual physician for providing advice on IUGR/FGR-related sequelae, monitoring and follow-up.


Sign in / Sign up

Export Citation Format

Share Document