scholarly journals Cryo-EM structures of an insecticidal Bt toxin reveal its mechanism of action on the membrane

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Matthew J. Byrne ◽  
Matthew G. Iadanza ◽  
Marcos Arribas Perez ◽  
Daniel P. Maskell ◽  
Rachel M. George ◽  
...  

AbstractInsect pests are a major cause of crop losses worldwide, with an estimated economic cost of $470 billion annually. Biotechnological tools have been introduced to control such insects without the need for chemical pesticides; for instance, the development of transgenic plants harbouring genes encoding insecticidal proteins. The Vip3 (vegetative insecticidal protein 3) family proteins from Bacillus thuringiensis convey toxicity to species within the Lepidoptera, and have wide potential applications in commercial agriculture. Vip3 proteins are proposed to exert their insecticidal activity through pore formation, though to date there is no mechanistic description of how this occurs on the membrane. Here we present cryo-EM structures of a Vip3 family toxin in both inactive and activated forms in conjunction with structural and functional data on toxin–membrane interactions. Together these data demonstrate that activated Vip3Bc1 complex is able to insert into membranes in a highly efficient manner, indicating that receptor binding is the likely driver of Vip3 specificity.

2019 ◽  
Vol 56 (Special Issue) ◽  
pp. 136-142 ◽  
Author(s):  
RK Tanwar ◽  
S Singh ◽  
SP Singh ◽  
Vikas Kumar Kanwar ◽  
Rakesh Kumar ◽  
...  

A basic IPM module for basmati rice as a part of integrated crop management accounting the pest prevalence and the information available from literature has been developed. As the module is location specific and dynamic, therefore needs regular updating and fine tuning depending on the location and pest prevalence. The technology has been successfully validated and implemented during 1998 to 2019 in Pusa Basmati 1, Taraori Basmati, Dehraduni Basmati, Pusa Basmati 1121 in Haryana, Uttar Pradesh and Uttarakhand with little modification and fine tuning. Implementation of the technology resulted in increase in rice grain yield i.e., 21.6% in Pusa Basmati 1 at Shikohpur, in Uttar Pradesh 21.5% in Taraori Basmati at Chhajpur in Haryana, 19.5% in Type 3 in Uttarakhand, 14.5 to 22.7% in Pusa Basmati 1121 in Haryana and 38.2% in Pusa Basmati 1121 in Uttar Pradesh over farmer's practices (FP). In all the basmati rice trials, higher yield as well as Benefit - Cost (B-C) ratio was obtained in IPM as compared to FP. Implementation of IPM led to significant reduction in uses of chemical pesticides. In case of IPM, only 1.46 application of chemical pesticides (103.2 g a.i./ha) were undertaken in Pusa Basmati 1121 against 2.8 application in FP (1214.4 g a.i./ha) at Bambawad, Uttar Pradesh. ICAR-NRRI, Cuttack developed and validated IPM module at Sigmapur (Cuttack, Odisha) non-Basmati rice variety Pooja for four kharif seasons i.e 2010-2013 using standard agronomic practices. The trial resulted in an enhancement of 47.1% yield and 26.47 % B-C ratio over FP. Additional income of Rs. 9857/- per ha was also obtained in IPM over FP. On-Farm trial on validation of IPM module in non-Basmati rice (Pooja variety) under semi deep water conditions conducted in 10 ha during rabi 2017 at Nagapur and Basudeipur villages in Khurda district of Odisha resulted in reduction in the incidence of insect pests and diseases with higher population of natural enemies as compared to FP. Rice yield was recorded 5600 kg ha-1 in IPM as against 4900 kg ha-1 in FP. Recently, ICT based e-pest monitoring and advisory has become an important component for area wise implementation of IPM at state and national level. The programme has been successfully implemented in Odisha during 2010 and 2011 under RKVY. Implementation of the programme had resulted successful management of swarming caterpillar in 13 rice growing districts of Odisha during kharif 2010 and 2011.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 10
Author(s):  
Daria V. Mamonova ◽  
Anna A. Vasileva ◽  
Yuri V. Petrov ◽  
Denis V. Danilov ◽  
Ilya E. Kolesnikov ◽  
...  

Surfaces functionalized with metal nanoparticles (NPs) are of great interest due to their wide potential applications in sensing, biomedicine, nanophotonics, etc. However, the precisely controllable decoration with plasmonic nanoparticles requires sophisticated techniques that are often multistep and complex. Here, we present a laser-induced deposition (LID) approach allowing for single-step surface decoration with NPs of controllable composition, morphology, and spatial distribution. The formation of Ag, Pt, and mixed Ag-Pt nanoparticles on a substrate surface was successfully demonstrated as a result of the LID process from commercially available precursors. The deposited nanoparticles were characterized with SEM, TEM, EDX, X-ray diffraction, and UV-VIS absorption spectroscopy, which confirmed the formation of crystalline nanoparticles of Pt (3–5 nm) and Ag (ca. 100 nm) with plasmonic properties. The advantageous features of the LID process allow us to demonstrate the spatially selective deposition of plasmonic NPs in a laser interference pattern, and thereby, the formation of periodic arrays of Ag NPs forming diffraction grating


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Sardul Singh Sandhu ◽  
Anil K. Sharma ◽  
Vikas Beniwal ◽  
Gunjan Goel ◽  
Priya Batra ◽  
...  

The growing demand for reducing chemical inputs in agriculture and increased resistance to insecticides have provided great impetus to the development of alternative forms of insect-pest control. Myco-biocontrol offers an attractive alternative to the use of chemical pesticides. Myco-biocontrol agents are naturally occurring organisms which are perceived as less damaging to the environment. Their mode of action appears little complex which makes it highly unlikely that resistance could be developed to a biopesticide. Past research has shown some promise of the use of fungi as a selective pesticide. The current paper updates us about the recent progress in the field of myco-biocontrol of insect pests and their possible mechanism of action to further enhance our understanding about the biological control of insect pests.


Author(s):  
Wan Zhang ◽  
Baining Ni ◽  
Hongkun Li ◽  
Yonggang Yang ◽  
Yongfang Li ◽  
...  

Circularly polarized luminescence (CPL) materials have attracted increasing interest due to their wide potential applications. However, achieving CPL-active materials with both large dissymmetry factor (glum) and high quantum yield (F)...


2016 ◽  
Vol 1 (1) ◽  
pp. 41
Author(s):  
. Nurindah

<p>Penerapan teknologi ramah lingkungan budi daya tanaman pada suatu lahan akan dapat mempertahankan kelestarian lingkungan. Penciptaan teknologi budi daya tanaman tembakau, serat, dan minyak industri di-arahkan pada teknologi yang dapat meningkatkan produktivitas dan mutu hasil, efisiensi biaya usaha tani, dan ramah lingkungan. Teknologi ramah lingkungan difokuskan pada penemuan komponen teknologi prapa-nen yang mempunyai dampak minimal terhadap pencemaran atau perusakan lingkungan, yang meliputi va-rietas-varietas unggul, teknik pengendalian hama dan penyakit, teknik konservasi lahan tembakau. Varietas-varietas unggul tersebut adalah varietas-varietas yang mempunyai ketahanan terhadap hama dan penyakit, yaitu tembakau Prancak 95, Prancak N1, Prancak N2, Kemloko 2, dan Grompol Jatim 1; kapas: Kanesia 11–Kanesia 13; kenaf: Karangploso 14–Karangploso 15; wijen: Sumberrejo 4; dan jarak kepyar: Asembagus 81. Teknik pengendalian hama dan penyakit yang ramah lingkungan adalah teknologi pengendalian hama yang membatasi atau meniadakan penggunaan insektisida kimia sintetik dan menerapkan teknik pengendalian de-ngan memanfaatkan peran musuh alami serangga hama atau antagonis patogen penyebab penyakit, dan penggunaan pestisida nabati. Teknik konservasi lahan untuk mengendalikan erosi dan penyakit lincat dikem-bangkan pada lahan tembakau temanggung dengan menerapkan penggunaan varietas tahan penyakit, pem-buatan terassering dan penguatnya, pengolahan lahan minimal, dan aplikasi mikroba antagonis. Teknologi ramah lingkungan tersebut telah diterapkan di tingkat petani dan memberikan dampak yang positif terhadap pengembangan komoditas.</p><p>Technology innovations for tobacco, fibers, and industrial-oil crops are directed to increase production and quality of the products, efficiency, and environmentally-friendly technologies. The efficiency and environ-menttally-friendly technologies are focused on the pre-harvest technology innovations that have minimal im-pacts on environmental damages. The technologies include superior varieties, pest control, and land conser-vation. The superior varieties are those that resistant to either insect pests or diseases, i.e. tobacco: Prancak 95, Prancak N1, Prancak N2, Kemloko 2, and Grompol Jatim 1; cotton: Kanesia 11–Kanesia 13; kenaf: Ka-rangploso 14–Karangploso 15; sesame: Sumberrejo 4; and  castor: Asembagus 81.  Environmentally-friendly pest control is to limit or no use synthetic-chemical pesticides in pest control, but optimally make use the role of natural enemies and antagonists and use biopesticides. Land conservation technique to control erosi-on as well as ”lincat’ disease has been developed in fields of temanggung tobacco by using tobacco variety resistant to the disease, terracering, minimum tillage, and application of antagonist microbes. Those techno-logies has been implemented in the farmers’ fields and has a positive impacts for the commodity develop-ment.</p><p> </p>


2021 ◽  
Author(s):  
Martin Raspor ◽  
Aleksandar Cingel

Significant limitations in potato production are crop loss due to the damage made by insect pests, and the cost of enormous amount of chemicals, harmful to humans and environment, extensively used in their control. As an alternative, development of genetically modified potato offered possibility for pest management in a more sustainable, environmentally friendly way. Over the past 30 years introduction of pest resistance traits progressed from a single gene to multiple stacked events and from Bt-toxin expression to expression of proteins from non-Bt sources, dsRNA and their combination, while advances in molecular biology have brought “cleaner” gene manipulation technologies. However, together with benefits any new technology also bears its risks, and there are still a range of unanswered questions and concerns about long-term impact of genetically modified crops – that with knowledge and precautionary approaches can be avoided or mitigated. Sustainability of genetically modified crops for pest control largely depends on the willingness to gain and implement such knowledge.


Author(s):  
Anna Alfocea-Roig ◽  
Sergio Huete-Hernandez ◽  
Alex Maldonado-Alameda ◽  
Jessica Giro-Paloma ◽  
Josep Maria Chimenos-Ribera ◽  
...  

Climate change has become one of the world’s leading threats. Currently, the construction industry has a high environmental footprint. For this reason, the scientific and technological sector is looking for new materials to reduce the environmental consequences of this division. It is well known that the valorisation of different by-products can contribute to the reduction of the energy global consumption and CO2 emissions. Magnesium Phosphate Cement (MPC) can be obtained by using Low Grade Magnesium Oxide (LG-MgO) as a by-product from the industrial process of magnesite calcination. In this research, a Sustainable MPC (Sust-MPC) for different construction purposes is developed by using LG-MgO along with monopotassium phosphate KH2PO4 (MKP) as raw materials. The increasing use of synthetic fibres in clothing, as well as China’s competitive prices on Animal Fibres (AF) market, have led to a commercial interest fibre decrease for wool-like AF in Spain. This study aims to formulate a Sust-MPC cement with Animal Fibre (AF) to reduce the cost of the new material (Sust-MPC-AF) and to increase the thermal insulation, allowing the use of Sust-MPC-AF in several potential applications. Besides, it should be emphasized that the final pH of Sust-MPC is neutral, which allows containing natural fibres. To develop Sust-MPC-AF, some properties such as thermal conductivity, density, Modulus of Elasticity (MoE), flexural strength, and economic cost were evaluated using the Design of Experiments (DoE). The DoE studies allowed obtaining a model for further optimization considering minimum thermal conductivity and cost dosages. The formulation 30L-25EW presents the minimum conductivity (λ=0.140 W·m-1·K-1). Therefore, two optimal dosages (36L-25EW and 24L-22EW) are obtained by considering mixing variables such as AF/Cement ratio (AF/C) and AF/Extra Water ratio (AF/EW).


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kyeongnam Kim ◽  
Jeong Oh Yang ◽  
Jae-Yoon Sung ◽  
Ji-Young Lee ◽  
Jeong Sun Park ◽  
...  

Abstract Infestation of phosphine (PH3) resistant insects threatens global grain reserves. PH3 fumigation controls rice weevil (Sitophilus oryzae) but not highly resistant insect pests. Here, we investigated naturally occurring strains of S. oryzae that were moderately resistant (MR), strongly resistant (SR), or susceptible (wild-type; WT) to PH3 using global proteome analysis and mitochondrial DNA sequencing. Both PH3 resistant (PH3–R) strains exhibited higher susceptibility to ethyl formate-mediated inhibition of cytochrome c oxidase than the WT strain, whereas the disinfectant PH3 concentration time of the SR strain was much longer than that of the MR strain. Unlike the MR strain, which showed altered expression levels of genes encoding metabolic enzymes involved in catabolic pathways that minimize metabolic burden, the SR strain showed changes in the mitochondrial respiratory chain. Our results suggest that the acquisition of strong PH3 resistance necessitates the avoidance of oxidative phosphorylation through the accumulation of a few non-synonymous mutations in mitochondrial genes encoding complex I subunits as well as nuclear genes encoding dihydrolipoamide dehydrogenase, concomitant with metabolic reprogramming, a recognized hallmark of cancer metabolism. Taken together, our data suggest that reprogrammed metabolism represents a survival strategy of SR insect pests for the compensation of minimized energy transduction under anoxic conditions. Therefore, understanding the resistance mechanism of PH3–R strains will support the development of new strategies to control insect pests.


2019 ◽  
Vol 19 (4) ◽  
Author(s):  
Catherine M Little ◽  
Thomas W Chapman ◽  
N Kirk Hillier

AbstractThe past 100 yr have seen dramatic philosophical shifts in our approach to controlling or managing pest species. The introduction of integrated pest management in the 1970s resulted in the incorporation of biological and behavioral approaches to preserve ecosystems and reduce reliance on synthetic chemical pesticides. Increased understanding of the local ecosystem, including its structure and the biology of its species, can improve efficacy of integrated pest management strategies. Pest management strategies incorporating insect learning paradigms to control insect pests or to use insects to control other pests can mediate risk to nontarget insects, including pollinators. Although our understanding of insect learning is in its early stages, efforts to integrate insect learning into pest management strategies have been promising. Due to considerable differences in cognitive abilities among insect species, a case-by-case assessment is needed for each potential application of insect learning within a pest management strategy.


2011 ◽  
Vol 43 (2) ◽  
pp. 269
Author(s):  
Behzad Habibpour ◽  
Amir Cheraghi ◽  
Mohammad Saeed Mossadegh

This article is the first report on the promising effect of an entomopathogenic fungus, <em>Metarhizium anisopliae</em> (Metschnikoff) Sorokin to control populations of <em>Microcerotermes diversus </em>Silvestri. Biological control is an alternative to the long-term usage of chemical pesticides.<em> M. anisopliae</em>, the causal agent of green muscardine disease of insects, is an important fungus in biological control of insect pests. Bait systems can eliminate entire colonies of subterranean termites. Baiting reduces adverse environmental impacts caused by organochlorine and organophosphate pesticides in the control of termites and creates sustainable protection of buildings against their invasion. Treated-sawdust bait was applied by two methods: a) combination of treated sawdust and untreated filter paper, and b) combination of treated sawdust and untreated sawdust. When combinations of treated sawdust and untreated sawdust were used, LC50 and LC90 were 8.4&times;106 and 3.9&times;107 (spore/ml), respectively. With the use of improved bait formula and more virulent strains, we hope to achieve better control of termite colonies and enable pathogens to become a useful element in the Integrated Pest Management system.


Sign in / Sign up

Export Citation Format

Share Document