scholarly journals Adipose stem cell niche reprograms the colorectal cancer stem cell metastatic machinery

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Simone Di Franco ◽  
Paola Bianca ◽  
Davide Stefano Sardina ◽  
Alice Turdo ◽  
Miriam Gaggianesi ◽  
...  

AbstractObesity is a strong risk factor for cancer progression, posing obesity-related cancer as one of the leading causes of death. Nevertheless, the molecular mechanisms that endow cancer cells with metastatic properties in patients affected by obesity remain unexplored.Here, we show that IL-6 and HGF, secreted by tumor neighboring visceral adipose stromal cells (V-ASCs), expand the metastatic colorectal (CR) cancer cell compartment (CD44v6 + ), which in turn secretes neurotrophins such as NGF and NT-3, and recruits adipose stem cells within tumor mass. Visceral adipose-derived factors promote vasculogenesis and the onset of metastatic dissemination by activation of STAT3, which inhibits miR-200a and enhances ZEB2 expression, effectively reprogramming CRC cells into a highly metastatic phenotype. Notably, obesity-associated tumor microenvironment provokes a transition in the transcriptomic expression profile of cells derived from the epithelial consensus molecular subtype (CMS2) CRC patients towards a mesenchymal subtype (CMS4). STAT3 pathway inhibition reduces ZEB2 expression and abrogates the metastatic growth sustained by adipose-released proteins. Together, our data suggest that targeting adipose factors in colorectal cancer patients with obesity may represent a therapeutic strategy for preventing metastatic disease.

2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Guangyu Ji ◽  
Wenjuan Zhou ◽  
Jingyi Du ◽  
Juan Zhou ◽  
Dong Wu ◽  
...  

AbstractColorectal cancer (CRC) stem cells are resistant to cancer therapy and are therefore responsible for tumour progression after conventional therapy fails. However, the molecular mechanisms underlying the maintenance of stemness are poorly understood. In this study, we identified PCGF1 as a crucial epigenetic regulator that sustains the stem cell-like phenotype of CRC. PCGF1 expression was increased in CRC and was significantly correlated with cancer progression and poor prognosis in CRC patients. PCGF1 knockdown inhibited CRC stem cell proliferation and CRC stem cell enrichment. Importantly, PCGF1 silencing impaired tumour growth in vivo. Mechanistically, PCGF1 bound to the promoters of CRC stem cell markers and activated their transcription by increasing the H3K4 histone trimethylation (H3K4me3) marks and decreasing the H3K27 histone trimethylation (H3K27me3) marks on their promoters by increasing expression of the H3K4me3 methyltransferase KMT2A and the H3K27me3 demethylase KDM6A. Our findings suggest that PCGF1 is a potential therapeutic target for CRC treatment.


Author(s):  
Federica Francescangeli ◽  
Paola Contavalli ◽  
Maria Laura De Angelis ◽  
Silvia Careccia ◽  
Michele Signore ◽  
...  

Abstract Background Quiescent/slow cycling cells have been identified in several tumors and correlated with therapy resistance. However, the features of chemoresistant populations and the molecular factors linking quiescence to chemoresistance are largely unknown. Methods A population of chemoresistant quiescent/slow cycling cells was isolated through PKH26 staining (which allows to separate cells on the basis of their proliferation rate) from colorectal cancer (CRC) xenografts and subjected to global gene expression and pathway activation analyses. Factors expressed by the quiescent/slow cycling population were analyzed through lentiviral overexpression approaches for their ability to induce a dormant chemoresistant state both in vitro and in mouse xenografts. The correlation between quiescence-associated factors, CRC consensus molecular subtype and cancer prognosis was analyzed in large patient datasets. Results Untreated colorectal tumors contain a population of quiescent/slow cycling cells with stem cell features (quiescent cancer stem cells, QCSCs) characterized by a predetermined mesenchymal-like chemoresistant phenotype. QCSCs expressed increased levels of ZEB2, a transcription factor involved in stem cell plasticity and epithelial-mesenchymal transition (EMT), and of antiapototic factors pCRAF and pASK1. ZEB2 overexpression upregulated pCRAF/pASK1 levels resulting in increased chemoresistance, enrichment of cells with stemness/EMT traits and proliferative slowdown of tumor xenografts. In parallel, chemotherapy treatment of tumor xenografts induced the prevalence of QCSCs with a stemness/EMT phenotype and activation of the ZEB2/pCRAF/pASK1 axis, resulting in a chemotherapy-unresponsive state. In CRC patients, increased ZEB2 levels correlated with worse relapse-free survival and were strongly associated to the consensus molecular subtype 4 (CMS4) characterized by dismal prognosis, decreased proliferative rates and upregulation of EMT genes. Conclusions These results show that chemotherapy-naive tumors contain a cell population characterized by a coordinated program of chemoresistance, quiescence, stemness and EMT. Such population becomes prevalent upon drug treatment and is responsible for chemotherapy resistance, thus representing a key target for more effective therapeutic approaches.


2020 ◽  
Vol 217 (10) ◽  
Author(s):  
Ute Koch ◽  
Freddy Radtke

In this issue of JEM, Varga et al. (https://doi.org/10.1084/jem.20191515) describe a mouse model of invasive and metastatic colorectal cancer (CRC) closely resembling the human consensus molecular subtype (CMS) 4 associated with the poorest overall survival of the four CMSs. Transcriptomic and bioinformatic analysis combined with pharmacological and genetic studies identified Notch3 as a promoter of tumor progression and metastasis. NOTCH3 expression was up-regulated in CMS4 CRC patients and associated with tumor staging, lymph node and distant metastasis. These findings feature NOTCH3 as putative therapeutic target for advanced CMS4 CRC patients.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Yan Zhou ◽  
Thomas J. Kipps ◽  
Suping Zhang

Wnt5a is involved in activating several noncanonical Wnt signaling pathways, which can inhibit or activate canonical Wnt/β-catenin signaling pathway in a receptor context-dependent manner. Wnt5a signaling is critical for regulating normal developmental processes, including stem cell self-renewal, proliferation, differentiation, migration, adhesion, and polarity. Moreover, the aberrant activation or inhibition of Wnt5a signaling is emerging as an important event in cancer progression, exerting both oncogenic and tumor suppressive effects. Recent studies show the involvement of Wnt5a signaling in regulating normal and cancer stem cell self-renewal, cancer cell proliferation, migration, and invasion. In this article, we review recent findings regarding the molecular mechanisms and roles of Wnt5a signaling in stem cells in embryogenesis and in the normal or neoplastic breast or ovary, highlighting that Wnt5a may have different effects on target cells depending on the surface receptors expressed by the target cell.


2021 ◽  
Author(s):  
Chaofan Peng ◽  
Yuqian Tan ◽  
Peng Yang ◽  
Kangpeng Jin ◽  
Chuan Zhang ◽  
...  

Abstract BackgroundEmerging studies have investigated circRNAs as significant regulation factors in multiple cancer progression. Nevertheless, the biological functions and underlying mechanisms of circRNAs in colorectal cancer progression remain unclear.MethodsA novel circRNA (circ-GALNT16) was identified by microarray and qRT-PCR. A series of phenotype experiments in vitro and vivo were performed to investigate the role of circ-GALNT16 in CRC. FISH, RNA pulldown assay, RIP assay, RNA sequencing, coimmunoprecipitation, and ChIP were constructed to explore the molecular mechanisms of circ-GALNT16 in colorectal cancer.ResultsCirc-GALNT16 was downregulated in colorectal cancer and negatively correlated with poor prognosis. Circ-GALNT16 suppressed the proliferation and metastasis ability of colorectal cancer in vitro and vivo. Mechanistically, circ-GALNT16 could bind to the KH3 domain of heterogeneous nuclear ribonucleoprotein K (hnRNPK), which resulted in the SUMOylation of hnRNPK. Additionally, circ-GALNT16 could enhance the hnRNPK-p53 complex by facilitating the SUMOylation of hnRNPK. Furthermore, RNA sequencing assay identified serpin family E member 1 as the target gene of circ-GALNT16 at the transcriptional level. Rescue assays revealed that circ-GALNT16 regulated the expression of Serpine1 by inhibiting the deSUMOylation of hnRNPK mediated by SUMO specific peptidase 2 and then regulating the sequence-specific DNA binding ability of the hnRNPK-p53 transcriptional complex.ConclusionsCirc-GALNT16 suppressed CRC progression via inhibiting Serpine1 expression through adjusting the sequence-specific DNA binding ability of the SENP2-mediated hnRNPK-p53 transcriptional complex and might work as a biomarker and therapeutic target for CRC.


2021 ◽  
Author(s):  
Fangyu Li ◽  
Michael G. White ◽  
Jennifer Davis ◽  
Kristi L. Hoffman ◽  
David Menter ◽  
...  

2020 ◽  
Vol 40 (1) ◽  
Author(s):  
Guosen Wang ◽  
Weiwei Sheng ◽  
Jingtong Tang ◽  
Xin Li ◽  
Jianping Zhou ◽  
...  

Abstract Serine-arginine protein kinase 2 (SRPK2) is aberrantly expressed in human malignancies including colorectal cancer (CRC). However, little is known about the molecular mechanisms, and the role of SRPK2 in chemosensitivity remains unexplored in CRC. We recently showed that SRPK2 promotes pancreatic cancer progression by down-regulating Numb and p53. Therefore, we investigated the cooperation between SRPK2, Numb and p53 in the cell migration, invasion and chemosensitivity of CRC in vitro. Here, we showed that SRPK2 expression was higher in CRC tumors than in nontumor tissues. SRPK2 expression was positively associated with clinicopathological characteristics of CRC patients, including tumor differentiation, T stage, N stage and UICC stage. Additionally, SRPK2 had no association with mutant p53 (mtp53) in SW480 and SW620 cells, but negatively regulated Numb and wild-type p53 (wtp53) in response to 5-fluorouracil or cisplatin treatment in HCT116 cells. Moreover, SRPK2, Numb and p53 coimmunoprecipitated into a triple complex with or without the treatment of 5-fluorouracil in HCT116 cells, and p53 knockdown reversed the up-regulation of wtp53 induced by SRPK2 silencing with chemical agent treatment. Furthermore, overexpression of SRPK2 increased cell migration and invasion and decreased chemosensitivity to 5-fluorouracil or cisplatin in HCT116 cells. Conversely, SRPK2 silencing decreased cell migration and invasion and increased chemosensitivity to 5-fluorouracil or cisplatin, yet these effects could be reversed by p53 knockdown under chemical agent treatment. These results thus reveal a novel role of SRPK2-Numb-p53 signaling in the progression of CRC and demonstrate that SRPK2 is a potential therapeutic target for CRC clinical therapy.


2020 ◽  
Vol 10 ◽  
Author(s):  
Bene A. Ekine-Afolabi ◽  
Anoka A. Njan ◽  
Solomon O. Rotimi ◽  
Anu R. I. ◽  
Attia M. Elbehi ◽  
...  

Cancer is the major cause of morbidity and mortality in the world today. The third most common cancer and which is most diet related is colorectal cancer (CRC). Although there is complexity and limited understanding in the link between diet and CRC, the advancement in research methods have demonstrated the involvement of non-coding RNAs (ncRNAs) as key regulators of gene expression. MicroRNAs (miRNAs) which are a class of ncRNAs are key players in cancer related pathways in the context of dietary modulation. The involvement of ncRNA in cancer progression has recently been clarified throughout the last decade. ncRNAs are involved in biological processes relating to tumor onset and progression. The advances in research have given insights into cell to cell communication, by highlighting the pivotal involvement of extracellular vesicle (EV) associated-ncRNAs in tumorigenesis. The abundance and stability of EV associated ncRNAs act as a new diagnostic and therapeutic target for cancer. The understanding of the deranging of these molecules in cancer can give access to modulating the expression of the ncRNAs, thereby influencing the cancer phenotype. Food derived exosomes/vesicles (FDE) are gaining interest in the implication of exosomes in cell-cell communication with little or no understanding to date on the role FDE plays. There are resident microbiota in the colon; to which the imbalance in the normal intestinal occurrence leads to chronic inflammation and the production of carcinogenic metabolites that lead to neoplasm. Limited studies have shown the implication of various types of microbiome in CRC incidence, without particular emphasis on fungi and protozoa. This review discusses important dietary factors in relation to the expression of EV-associated ncRNAs in CRC, the impact of diet on the colon ecosystem with particular emphasis on molecular mechanisms of interactions in the ecosystem, the influence of homeostasis regulators such as glutathione, and its conjugating enzyme-glutathione S-transferase (GST) polymorphism on intestinal ecosystem, oxidative stress response, and its relationship to DNA adduct fighting enzyme-0-6-methylguanine-DNA methyltransferase. The understanding of the molecular mechanisms and interaction in the intestinal ecosystem will inform on the diagnostic, preventive and prognosis as well as treatment of CRC.


Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 788 ◽  
Author(s):  
Monika Stastna ◽  
Lucie Janeckova ◽  
Dusan Hrckulak ◽  
Vitezslav Kriz ◽  
Vladimir Korinek

Colorectal cancer (CRC) is a heterogeneous disease that includes both hereditary and sporadic types of tumors. Tumor initiation and growth is driven by mutational or epigenetic changes that alter the function or expression of multiple genes. The genes predominantly encode components of various intracellular signaling cascades. In this review, we present mouse intestinal cancer models that include alterations in the Wnt, Hippo, p53, epidermal growth factor (EGF), and transforming growth factor β (TGFβ) pathways; models of impaired DNA mismatch repair and chemically induced tumorigenesis are included. Based on their molecular biology characteristics and mutational and epigenetic status, human colorectal carcinomas were divided into four so-called consensus molecular subtype (CMS) groups. It was shown subsequently that the CMS classification system could be applied to various cell lines derived from intestinal tumors and tumor-derived organoids. Although the CMS system facilitates characterization of human CRC, individual mouse models were not assigned to some of the CMS groups. Thus, we also indicate the possible assignment of described animal models to the CMS group. This might be helpful for selection of a suitable mouse strain to study a particular type of CRC.


Sign in / Sign up

Export Citation Format

Share Document