scholarly journals Therapeutic targeting of the PLK1-PRC1-axis triggers cell death in genomically silent childhood cancer

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jing Li ◽  
Shunya Ohmura ◽  
Aruna Marchetto ◽  
Martin F. Orth ◽  
Roland Imle ◽  
...  

AbstractChromosomal instability (CIN) is a hallmark of cancer1. Yet, many childhood cancers, such as Ewing sarcoma (EwS), feature remarkably ‘silent’ genomes with minimal CIN2. Here, we show in the EwS model how uncoupling of mitosis and cytokinesis via targeting protein regulator of cytokinesis 1 (PRC1) or its activating polo-like kinase 1 (PLK1) can be employed to induce fatal genomic instability and tumor regression. We find that the EwS-specific oncogenic transcription factor EWSR1-FLI1 hijacks PRC1, which physiologically safeguards controlled cell division, through binding to a proximal enhancer-like GGAA-microsatellite, thereby promoting tumor growth and poor clinical outcome. Via integration of transcriptome-profiling and functional in vitro and in vivo experiments including CRISPR-mediated enhancer editing, we discover that high PRC1 expression creates a therapeutic vulnerability toward PLK1 inhibition that can repress even chemo-resistant EwS cells by triggering mitotic catastrophe.Collectively, our results exemplify how aberrant PRC1 activation by a dominant oncogene can confer malignancy but provide opportunities for targeted therapy, and identify PRC1 expression as an important determinant to predict the efficacy of PLK1 inhibitors being used in clinical trials.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Aruna Marchetto ◽  
Shunya Ohmura ◽  
Martin F. Orth ◽  
Maximilian M. L. Knott ◽  
Maria V. Colombo ◽  
...  

AbstractEwing sarcoma (EwS) is an aggressive childhood cancer likely originating from mesenchymal stem cells or osteo-chondrogenic progenitors. It is characterized by fusion oncoproteins involving EWSR1 and variable members of the ETS-family of transcription factors (in 85% FLI1). EWSR1-FLI1 can induce target genes by using GGAA-microsatellites as enhancers.Here, we show that EWSR1-FLI1 hijacks the developmental transcription factor SOX6 – a physiological driver of proliferation of osteo-chondrogenic progenitors – by binding to an intronic GGAA-microsatellite, which promotes EwS growth in vitro and in vivo. Through integration of transcriptome-profiling, published drug-screening data, and functional in vitro and in vivo experiments including 3D and PDX models, we discover that constitutively high SOX6 expression promotes elevated levels of oxidative stress that create a therapeutic vulnerability toward the oxidative stress-inducing drug Elesclomol.Collectively, our results exemplify how aberrant activation of a developmental transcription factor by a dominant oncogene can promote malignancy, but provide opportunities for targeted therapy.


2020 ◽  
Author(s):  
Hui Tong ◽  
Junjie Xie ◽  
Xiaohui Liu ◽  
Chenghong Peng ◽  
Baiyong Shen ◽  
...  

Abstract Background: Kinetochore associated 1 (KNTC1) encodes a kinetochore component in Rod-Zwilch-ZW10 (RZZ) complex which is essential for the segregation of sister chromatids during mitosis and participates in the spindle checkpoint. Recent research demonstrated that kinetochore proteins may be potential biomarkers and may contribute to the development of human malignancies. Here, we sought to identify the biological significances of KNTC1 in hepatocellular carcinoma (HCC).Methods: KNTC1 expression was studied in HCC tissues by immunohistochemistry. Lentivirus delivered short hairpin RNA (shRNA) was performed to generate KNTC1 knockdown HCC cell lines. The effects of KNTC1 on HCC cells proliferation, migration, apoptosis and tumor formation was analyzed by MTT assay, colony formation assay, wound-healing assay, transwell migration assay, annexin V assay in vitro and in nude mouse models in vivo.Results: Our immunohistochemistry experiment showed that KNTC1 was highly expressed in HCC tissues and correlated with terrible prognosis, indicating that KNTC1 acts a pivotal role in HCC development. Furthermore, shRNA KNTC1 (Lv‑shKNTC1) was applied to infect BEL-7404 and SK-HEP-1 to identify roles of KNTC1 on HCC. Lv‑shKNTC1 cells showed reduced proliferation ability, increased apoptosis and decreased migration ability. In vivo experiments suggested that xenografts grow significantly slower upon the silencing of KNTC1. Mechanistically, the protein levels of PIK3CA, p-Akt, CCND1, CDK6 are all down-regulated in Lv-KNTC1 SK-HEP-1 cells. Therefore, KNTC1 may affect the biological activity of HCC cells through PI3K/Akt signaling pathway. Conclusions: In summary, the key finding of this report highlighted the significance of KNTC1 in tumor regression of HCC, demonstrating KNTC1 as an innovative target for adjuvant treatment of HCC.


2020 ◽  
Author(s):  
Hui Tong ◽  
Junjie Xie ◽  
Xiaohui Liu ◽  
Chenghong Peng ◽  
Baiyong Shen ◽  
...  

Abstract Background: Kinetochore associated 1 (KNTC1) encodes a kinetochore component in Rod-Zwilch-ZW10 (RZZ) complex which is essential for the segregation of sister chromatids during mitosis and participates in the spindle checkpoint. Recent research demonstrated that kinetochore proteins may be potential biomarkers and may contribute to the development of human malignancies. Here, we sought to identify the biological significances of KNTC1 in hepatocellular carcinoma (HCC).Methods: KNTC1 expression was studied in HCC tissues by immunohistochemistry. Lentivirus delivered short hairpin RNA (shRNA) was performed to generate KNTC1 knockdown HCC cell lines. The effects of KNTC1 on HCC cells proliferation, migration, apoptosis and tumor formation was analyzed by MTT assay, colony formation assay, wound-healing assay, transwell migration assay, annexin V assay in vitro and in nude mouse models in vivo.Results: Our immunohistochemistry experiment showed that KNTC1 was highly expressed in HCC tissues and correlated with terrible prognosis, indicating that KNTC1 acts a pivotal role in HCC development. Furthermore, shRNA KNTC1 (Lv‑shKNTC1) was applied to infect BEL-7404 and SK-HEP-1 to identify roles of KNTC1 on HCC. Lv‑shKNTC1 cells showed reduced proliferation ability, increased apoptosis and decreased migration ability. In vivo experiments suggested that xenografts grow significantly slower upon the silencing of KNTC1. Mechanistically, the protein levels of PIK3CA, p-Akt, CCND1, CDK6 are all down-regulated in Lv-KNTC1 SK-HEP-1 cells. Therefore, KNTC1 may affect the biological activity of HCC cells through PI3K/Akt signaling pathway.Conclusions: In summary, the key finding of this report highlighted the significance of KNTC1 in tumor regression of HCC, demonstrating KNTC1 as an innovative target for adjuvant treatment of HCC.


2020 ◽  
Author(s):  
Hui Tong ◽  
Junjie Xie ◽  
Xiaohui Liu ◽  
Chenghong Peng ◽  
Baiyong Shen ◽  
...  

Abstract Background: Kinetochore associated 1 (KNTC1) encodes a kinetochore component in Rod‐Zwilch‐ZW10 (RZZ) complex which is essential for the segregation of sister chromatids during mitosis and participates in the spindle checkpoint. Recent research demonstrated that kinetochore proteins may be potential biomarkers and may contribute to the development of human malignancies. Here, we sought to identify the biological significances of KNTC1 in hepatocellular carcinoma (HCC).Methods: KNTC1 expression was studied in HCC tissues by immunohistochemistry. Lentivirus delivered short hairpin RNA (shRNA) was performed to generate KNTC1 knockdown HCC cell lines. The effects of KNTC1 on HCC cells proliferation, migration, apoptosis and tumor formation was analyzed by MTT assay, colony formation assay, wound‐healing assay, transwell migration assay, annexin V assay in vitro and in nude mouse models in vivo.Results: Our immunohistochemistry experiment showed that KNTC1 was highly expressed in HCC tissues and correlated with terrible prognosis, indicating that KNTC1 acts a pivotal role in HCC development. Furthermore, shRNA KNTC1 (Lv‐shKNTC1) was applied to infect BEL‐7404 and SK‐HEP‐1 to identify roles of KNTC1 on HCC. Lv‐shKNTC1 cells showed reduced proliferation ability, increased apoptosis and decreased migration ability. In vivo experiments suggested that xenografts grow significantly slower upon the silencing of KNTC1. Mechanistically, the protein levels of PIK3CA, p‐Akt, CCND1, CDK6 are all down‐regulated in Lv‐KNTC1 SK‐HEP‐1 cells. Therefore, KNTC1 may affect the biological activity of HCC cells through PI3K/Akt signaling pathway.Conclusions: In summary, the key finding of this report highlighted the significance of KNTC1 in tumor regression of HCC, demonstrating KNTC1 as an innovative target for adjuvant treatment of HCC.


2019 ◽  
Vol 65 (5) ◽  
pp. 760-765
Author(s):  
Margarita Tyndyk ◽  
Irina Popovich ◽  
A. Malek ◽  
R. Samsonov ◽  
N. Germanov ◽  
...  

The paper presents the results of the research on the antitumor activity of a new drug - atomic clusters of silver (ACS), the colloidal solution of nanostructured silver bisilicate Ag6Si2O7 with particles size of 1-2 nm in deionized water. In vitro studies to evaluate the effect of various ACS concentrations in human tumor cells cultures (breast cancer, colon carcinoma and prostate cancer) were conducted. The highest antitumor activity of ACS was observed in dilutions from 2.7 mg/l to 5.1 mg/l, resulting in the death of tumor cells in all studied cell cultures. In vivo experiments on transplanted Ehrlich carcinoma model in mice consuming 0.75 mg/kg ACS with drinking water revealed significant inhibition of tumor growth since the 14th day of experiment (maximally by 52% on the 28th day, p < 0.05) in comparison with control. Subcutaneous injections of 2.5 mg/kg ACS inhibited Ehrlich's tumor growth on the 7th and 10th days of the experiment (p < 0.05) as compared to control.


Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 411
Author(s):  
Nader Kameli ◽  
Anya Dragojlovic-Kerkache ◽  
Paul Savelkoul ◽  
Frank R. Stassen

In recent years, plant-derived extracellular vesicles (PDEVs) have gained the interest of many experts in fields such as microbiology and immunology, and research in this field has exponentially increased. These nano-sized particles have provided researchers with a number of interesting findings, making their application in human health and disease very promising. Both in vitro and in vivo experiments have shown that PDEVs can exhibit a multitude of effects, suggesting that these vesicles may have many potential future applications, including therapeutics and nano-delivery of compounds. While the preliminary results are promising, there are still some challenges to face, such as a lack of protocol standardization, as well as knowledge gaps that need to be filled. This review aims to discuss various aspects of PDEV knowledge, including their preliminary findings, challenges, and future uses, giving insight into the complexity of conducting research in this field.


2020 ◽  
Vol 22 (1) ◽  
pp. 233
Author(s):  
Eunkuk Park ◽  
Chang Gun Lee ◽  
Eunguk Lim ◽  
Seokjin Hwang ◽  
Seung Hee Yun ◽  
...  

Osteoporosis is a common disease caused by an imbalance of processes between bone resorption by osteoclasts and bone formation by osteoblasts in postmenopausal women. The roots of Gentiana lutea L. (GL) are reported to have beneficial effects on various human diseases related to liver functions and gastrointestinal motility, as well as on arthritis. Here, we fractionated and isolated bioactive constituent(s) responsible for anti-osteoporotic effects of GL root extract. A single phytochemical compound, loganic acid, was identified as a candidate osteoprotective agent. Its anti-osteoporotic effects were examined in vitro and in vivo. Treatment with loganic acid significantly increased osteoblastic differentiation in preosteoblast MC3T3-E1 cells by promoting alkaline phosphatase activity and increasing mRNA expression levels of bone metabolic markers such as Alpl, Bglap, and Sp7. However, loganic acid inhibited osteoclast differentiation of primary-cultured monocytes derived from mouse bone marrow. For in vivo experiments, the effect of loganic acid on ovariectomized (OVX) mice was examined for 12 weeks. Loganic acid prevented OVX-induced bone mineral density loss and improved bone structural properties in osteoporotic model mice. These results suggest that loganic acid may be a potential therapeutic candidate for treatment of osteoporosis.


2021 ◽  
Vol 22 (4) ◽  
pp. 1985
Author(s):  
Xiaohe Li ◽  
Ling Ma ◽  
Kai Huang ◽  
Yuli Wei ◽  
Shida Long ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a fatal and age-related pulmonary disease. Nintedanib is a receptor tyrosine kinase inhibitor, and one of the only two listed drugs against IPF. Regorafenib is a novel, orally active, multi-kinase inhibitor that has similar targets to nintedanib and is applied to treat colorectal cancer and gastrointestinal stromal tumors in patients. In this study, we first identified that regorafenib could alleviate bleomycin-induced pulmonary fibrosis in mice. The in vivo experiments indicated that regorafenib suppresses collagen accumulation and myofibroblast activation. Further in vitro mechanism studies showed that regorafenib inhibits the activation and migration of myofibroblasts and extracellular matrix production, mainly through suppressing the transforming growth factor (TGF)-β1/Smad and non-Smad signaling pathways. In vitro studies have also indicated that regorafenib could augment autophagy in myofibroblasts by suppressing TGF-β1/mTOR (mechanistic target of rapamycin) signaling, and could promote apoptosis in myofibroblasts. In conclusion, regorafenib attenuates bleomycin-induced pulmonary fibrosis by suppressing the TGF-β1 signaling pathway.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Katherine E. Harris ◽  
Kyle J. Lorentsen ◽  
Harbani K. Malik-Chaudhry ◽  
Kaitlyn Loughlin ◽  
Harish Medlari Basappa ◽  
...  

AbstractThe use of recombinant interleukin-2 (IL-2) as a therapeutic protein has been limited by significant toxicities despite its demonstrated ability to induce durable tumor-regression in cancer patients. The adverse events and limited efficacy of IL-2 treatment are due to the preferential binding of IL-2 to cells that express the high-affinity, trimeric receptor, IL-2Rαβγ such as endothelial cells and T-regulatory cells, respectively. Here, we describe a novel bispecific heavy-chain only antibody which binds to and activates signaling through the heterodimeric IL-2Rβγ receptor complex that is expressed on resting T-cells and NK cells. By avoiding binding to IL-2Rα, this molecule circumvents the preferential T-reg activation of native IL-2, while maintaining the robust stimulatory effects on T-cells and NK-cells in vitro. In vivo studies in both mice and cynomolgus monkeys confirm the molecule’s in vivo biological activity, extended pharmacodynamics due to the Fc portion of the molecule, and enhanced safety profile. Together, these results demonstrate that the bispecific antibody is a safe and effective IL-2R agonist that harnesses the benefits of the IL-2 signaling pathway as a potential anti-cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document