scholarly journals Interdependent iron and phosphorus availability controls photosynthesis through retrograde signaling

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hye-In Nam ◽  
Zaigham Shahzad ◽  
Yanniv Dorone ◽  
Sophie Clowez ◽  
Kangmei Zhao ◽  
...  

AbstractIron deficiency hampers photosynthesis and is associated with chlorosis. We recently showed that iron deficiency-induced chlorosis depends on phosphorus availability. How plants integrate these cues to control chlorophyll accumulation is unknown. Here, we show that iron limitation downregulates photosynthesis genes in a phosphorus-dependent manner. Using transcriptomics and genome-wide association analysis, we identify two genes, PHT4;4 encoding a chloroplastic ascorbate transporter and bZIP58, encoding a nuclear transcription factor, which prevent the downregulation of photosynthesis genes leading to the stay-green phenotype under iron-phosphorus deficiency. Joint limitation of these nutrients induces ascorbate accumulation by activating expression of an ascorbate biosynthesis gene, VTC4, which requires bZIP58. Furthermore, we demonstrate that chloroplastic ascorbate transport prevents the downregulation of photosynthesis genes under iron-phosphorus combined deficiency through modulation of ROS homeostasis. Our study uncovers a ROS-mediated chloroplastic retrograde signaling pathway to adapt photosynthesis to nutrient availability.

2021 ◽  
Author(s):  
Hye-In Nam ◽  
Zaigham Shahzad ◽  
Yanniv Dorone ◽  
Sophie Clowez ◽  
Kangmei Zhao ◽  
...  

Iron deficiency hampers photosynthesis and is associated with chlorosis. We recently showed that iron deficiency-induced chlorosis depends on phosphorus availability. How plants integrate these cues to control chlorophyll accumulation is unknown. Here, we show that iron limitation downregulates photosynthesis genes in a phosphorus-dependent manner. Using transcriptomics and genome-wide association analysis, we identify two genes, a chloroplastic ascorbate transporter (PHT4;4) and a nuclear transcription factor (bZIP58), which prevent the downregulation of photosynthesis genes leading to the stay-green phenotype under iron-phosphorus deficiency. Joint limitation of these nutrients induces ascorbate accumulation by activating expression of an ascorbate biosynthesis gene, VTC4, which requires bZIP58. Exogenous ascorbate prevents iron deficiency-induced chlorosis in vtc4 mutants, but not in bzip58 or pht4;4. Our study demonstrates chloroplastic ascorbate transport is essential for preventing the downregulation of photosynthesis genes under iron-phosphorus combined deficiency. These findings uncover a molecular pathway coordinating chloroplast-nucleus communication to adapt photosynthesis to nutrient availability.


Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 23
Author(s):  
Antt Htet Wai ◽  
Muhammad Waseem ◽  
A B M Mahbub Morshed Khan ◽  
Ujjal Kumar Nath ◽  
Do Jin Lee ◽  
...  

Protein disulfide isomerases (PDI) and PDI-like proteins catalyze the formation and isomerization of protein disulfide bonds in the endoplasmic reticulum and prevent the buildup of misfolded proteins under abiotic stress conditions. In the present study, we conducted the first comprehensive genome-wide exploration of the PDI gene family in tomato (Solanum lycopersicum L.). We identified 19 tomato PDI genes that were unevenly distributed on 8 of the 12 tomato chromosomes, with segmental duplications detected for 3 paralogous gene pairs. Expression profiling of the PDI genes revealed that most of them were differentially expressed across different organs and developmental stages of the fruit. Furthermore, most of the PDI genes were highly induced by heat, salt, and abscisic acid (ABA) treatments, while relatively few of the genes were induced by cold and nutrient and water deficit (NWD) stresses. The predominant expression of SlPDI1-1, SlPDI1-3, SlPDI1-4, SlPDI2-1, SlPDI4-1, and SlPDI5-1 in response to abiotic stress and ABA treatment suggested they play regulatory roles in abiotic stress tolerance in tomato in an ABA-dependent manner. Our results provide new insight into the structure and function of PDI genes and will be helpful for the selection of candidate genes involved in fruit development and abiotic stress tolerance in tomato.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Su Yon Jung ◽  
Jeanette C. Papp ◽  
Eric M. Sobel ◽  
Matteo Pellegrini ◽  
Herbert Yu ◽  
...  

AbstractMolecular and genetic immune-related pathways connected to breast cancer and lifestyles in postmenopausal women are not fully characterized. In this study, we explored the role of pro-inflammatory cytokines such as C-reactive protein (CRP) and interleukin-6 (IL-6) in those pathways at the genome-wide level. With single-nucleotide polymorphisms (SNPs) in the biomarkers and lifestyles together, we further constructed risk profiles to improve predictability for breast cancer. Our earlier genome-wide association gene-environment interaction study used large cohort data from the Women’s Health Initiative Database for Genotypes and Phenotypes Study and identified 88 SNPs associated with CRP and IL-6. For this study, we added an additional 68 SNPs from previous GWA studies, and together with 48 selected lifestyles, evaluated for the association with breast cancer risk via a 2-stage multimodal random survival forest and generalized multifactor dimensionality reduction methods. Overall and in obesity strata (by body mass index, waist, waist-to-hip ratio, exercise, and dietary fat intake), we identified the most predictive genetic and lifestyle variables. Two SNPs (SALL1 rs10521222 and HLA-DQA1 rs9271608) and lifestyles, including alcohol intake, lifetime cumulative exposure to estrogen, and overall and visceral obesity, are the most common and strongest predictive markers for breast cancer across the analyses. The risk profile that combined those variables presented their synergistic effect on the increased breast cancer risk in a gene–lifestyle dose-dependent manner. Our study may contribute to improved predictability for breast cancer and suggest potential interventions for the women with the risk genotypes and lifestyles to reduce their breast cancer risk.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Raju Bheemanahalli ◽  
Montana Knight ◽  
Cherryl Quinones ◽  
Colleen J. Doherty ◽  
S. V. Krishna Jagadish

AbstractHigh night temperatures (HNT) are shown to significantly reduce rice (Oryza sativa L.) yield and quality. A better understanding of the genetic architecture of HNT tolerance will help rice breeders to develop varieties adapted to future warmer climates. In this study, a diverse indica rice panel displayed a wide range of phenotypic variability in yield and quality traits under control night (24 °C) and higher night (29 °C) temperatures. Genome-wide association analysis revealed 38 genetic loci associated across treatments (18 for control and 20 for HNT). Nineteen loci were detected with the relative changes in the traits between control and HNT. Positive phenotypic correlations and co-located genetic loci with previously cloned grain size genes revealed common genetic regulation between control and HNT, particularly grain size. Network-based predictive models prioritized 20 causal genes at the genetic loci based on known gene/s expression under HNT in rice. Our study provides important insights for future candidate gene validation and molecular marker development to enhance HNT tolerance in rice. Integrated physiological, genomic, and gene network-informed approaches indicate that the candidate genes for stay-green trait may be relevant to minimizing HNT-induced yield and quality losses during grain filling in rice by optimizing source-sink relationships.


2009 ◽  
Vol 191 (13) ◽  
pp. 4082-4096 ◽  
Author(s):  
Nicholas J. Shikuma ◽  
Fitnat H. Yildiz

ABSTRACT Vibrio cholerae is a facultative human pathogen. In its aquatic habitat and as it passes through the digestive tract, V. cholerae must cope with fluctuations in salinity. We analyzed the genome-wide transcriptional profile of V. cholerae grown at different NaCl concentrations and determined that the expression of compatible solute biosynthesis and transporter genes, virulence genes, and genes involved in adhesion and biofilm formation is differentially regulated. We determined that salinity modulates biofilm formation, and this response was mediated through the transcriptional regulators VpsR and VpsT. Additionally, a transcriptional regulator controlling an osmolarity adaptation response was identified. This regulator, OscR (osmolarity controlled regulator), was found to modulate the transcription of genes involved in biofilm matrix production and motility in a salinity-dependent manner. oscR mutants were less motile and exhibited enhanced biofilm formation only under low-salt conditions.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Jessilyn Dunn ◽  
Haiwei Qiu ◽  
Soyeon Kim ◽  
Daudi Jjingo ◽  
Ryan Hoffman ◽  
...  

Atherosclerosis preferentially occurs in arterial regions of disturbed blood flow (d-flow), which alters gene expression, endothelial function, and atherosclerosis. Here, we show that d-flow regulates genome-wide DNA methylation patterns in a DNA methyltransferase (DNMT)-dependent manner. We found that d-flow induced expression of DNMT1, but not DNMT3a or DNMT3b, in mouse arterial endothelium in vivo and in cultured endothelial cells by oscillatory shear (OS) compared to unidirectional laminar shear in vitro. The DNMT inhibitor 5-Aza-2’deoxycytidine (5Aza) or DNMT1 siRNA significantly reduced OS-induced endothelial inflammation. Moreover, 5Aza reduced lesion formation in two atherosclerosis models using ApoE-/- mice (western diet for 3 months and the partial carotid ligation model with western diet for 3 weeks). To identify the 5Aza mechanisms, we conducted two genome-wide studies: reduced representation bisulfite sequencing (RRBS) and transcript microarray using endothelial-enriched gDNA and RNA, respectively, obtained from the partially-ligated left common carotid artery (LCA exposed to d-flow) and the right contralateral control (RCA exposed to s-flow) of mice treated with 5Aza or vehicle. D-flow induced DNA hypermethylation in 421 gene promoters, which was significantly prevented by 5Aza in 335 genes. Systems biological analyses using the RRBS and the transcriptome data revealed 11 mechanosensitive genes whose promoters were hypermethylated by d-flow but rescued by 5Aza treatment. Of those, five genes contain hypermethylated cAMP-response-elements in their promoters, including the transcription factors HoxA5 and Klf3. Their methylation status could serve as a mechanosensitive master switch in endothelial gene expression. Our results demonstrate that d-flow controls epigenomic DNA methylation patterns in a DNMT-dependent manner, which in turn alters endothelial gene expression and induces atherosclerosis.


2018 ◽  
Vol 231 ◽  
pp. 364-373 ◽  
Author(s):  
Nikolai P. Bityutskii ◽  
Kirill L. Yakkonen ◽  
Anastasiya I. Petrova ◽  
Kseniia A. Lukina ◽  
Alexey L. Shavarda

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zahra Iqbal ◽  
Mohammed Shariq Iqbal ◽  
Lalida Sangpong ◽  
Gholamreza Khaksar ◽  
Supaart Sirikantaramas ◽  
...  

Abstract Background Fruit ripening is an intricate developmental process driven by a highly coordinated action of complex hormonal networks. Ethylene is considered as the main phytohormone that regulates the ripening of climacteric fruits. Concomitantly, several ethylene-responsive transcription factors (TFs) are pivotal components of the regulatory network underlying fruit ripening. Calmodulin-binding transcription activator (CAMTA) is one such ethylene-induced TF implicated in various stress and plant developmental processes. Results Our comprehensive analysis of the CAMTA gene family in Durio zibethinus (durian, Dz) identified 10 CAMTAs with conserved domains. Phylogenetic analysis of DzCAMTAs, positioned DzCAMTA3 with its tomato ortholog that has already been validated for its role in the fruit ripening process through ethylene-mediated signaling. Furthermore, the transcriptome-wide analysis revealed DzCAMTA3 and DzCAMTA8 as the highest expressing durian CAMTA genes. These two DzCAMTAs possessed a distinct ripening-associated expression pattern during post-harvest ripening in Monthong, a durian cultivar native to Thailand. The expression profiling of DzCAMTA3 and DzCAMTA8 under natural ripening conditions and ethylene-induced/delayed ripening conditions substantiated their roles as ethylene-induced transcriptional activators of ripening. Similarly, auxin-suppressed expression of DzCAMTA3 and DzCAMTA8 confirmed their responsiveness to exogenous auxin treatment in a time-dependent manner. Accordingly, we propose that DzCAMTA3 and DzCAMTA8 synergistically crosstalk with ethylene during durian fruit ripening. In contrast, DzCAMTA3 and DzCAMTA8 antagonistically with auxin could affect the post-harvest ripening process in durian. Furthermore, DzCAMTA3 and DzCAMTA8 interacting genes contain significant CAMTA recognition motifs and regulated several pivotal fruit-ripening-associated pathways. Conclusion Taken together, the present study contributes to an in-depth understanding of the structure and probable function of CAMTA genes in the post-harvest ripening of durian.


2002 ◽  
Vol 22 (8) ◽  
pp. 2642-2649 ◽  
Author(s):  
Stéphane Le Crom ◽  
Frédéric Devaux ◽  
Philippe Marc ◽  
Xiaoting Zhang ◽  
W. Scott Moye-Rowley ◽  
...  

ABSTRACT Yrr1p is a recently described Zn2Cys6 transcription factor involved in the pleiotropic drug resistance (PDR) phenomenon. It is controlled in a Pdr1p-dependent manner and is autoregulated. We describe here a new genome-wide approach to characterization of the set of genes directly regulated by Yrr1p. We found that the time-course production of an artificial chimera protein containing the DNA-binding domain of Yrr1p activated the 15 genes that are also up-regulated by a gain-of-function mutant of Yrr1p. Gel mobility shift assays showed that the promoters of the genes AZR1, FLR1, SNG1, YLL056C, YLR346C, and YPL088W interacted with Yrr1p. The putative consensus Yrr1p binding site deduced from these experiments, (T/A)CCG(C/T)(G/T)(G/T)(A/T)(A/T), is strikingly similar to the PDR element binding site sequence recognized by Pdr1p and Pdr3p. The minor differences between these sequences are consistent with Yrr1p and Pdr1p and Pdr3p having different sets of target genes. According to these data, some target genes are directly regulated by Pdr1p and Pdr3p or by Yrr1p, whereas some genes are indirectly regulated by the activation of Yrr1p. Some genes, such as YOR1, SNQ2, and FLR1, are clearly directly controlled by both classes of transcription factor, suggesting an important role for the corresponding membrane proteins.


2002 ◽  
Vol 282 (4) ◽  
pp. G598-G607 ◽  
Author(s):  
Andreas Rolfs ◽  
Herbert L. Bonkovsky ◽  
James G. Kohlroser ◽  
Kristina McNeal ◽  
Ashish Sharma ◽  
...  

Hereditary hemochromatosis (HHC) is one of the most frequent genetic disorders in humans. In healthy individuals, absorption of iron in the intestine is tightly regulated by cells with the highest iron demand, in particular erythroid precursors. Cloning of intestinal iron transporter proteins provided new insight into mechanisms and regulation of intestinal iron absorption. The aim of this study was to assess whether, in humans, the two transporters are regulated in an iron-dependent manner and whether this regulation is disturbed in HHC. Using quantitative PCR, we measured mRNA expression of divalent cation transporter 1 (DCT1), iron-regulated gene 1 (IREG1), and hephaestin in duodenal biopsy samples of individuals with normal iron levels, iron-deficiency anemia, or iron overload. In controls, we found inverse relationships between the DCT1 splice form containing an iron-responsive element (IRE) and blood hemoglobin, serum transferrin saturation, or ferritin. Subjects with iron-deficiency anemia showed a significant increase in expression of the spliced form, DCT1(IRE) mRNA. Similarly, in subjects homozygous for the C282Y HFE mutation, DCT1(IRE) expression levels remained high despite high serum iron saturation. Furthermore, a significantly increased IREG1 expression was observed. Hephaestin did not exhibit a similar iron-dependent regulation. Our data show that expression levels of human DCT1 mRNA, and to a lesser extent IREG1 mRNA, are regulated in an iron-dependent manner, whereas mRNA of hephaestin is not affected. The lack of appropriate downregulation of apical and basolateral iron transporters in duodenum likely leads to excessive iron absorption in persons with HHC.


Sign in / Sign up

Export Citation Format

Share Document