scholarly journals Time-restricted feeding induces Lactobacillus- and Akkermansia-specific functional changes in the rat fecal microbiota

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Antonio Palomba ◽  
Alessandro Tanca ◽  
Marcello Abbondio ◽  
Rosangela Sau ◽  
Monica Serra ◽  
...  

AbstractDiet is a key factor influencing gut microbiota (GM) composition and functions, which in turn affect host health. Among dietary regimens, time-restricted (TR) feeding has been associated to numerous health benefits. The impact of TR feeding on the GM composition has been mostly explored by means of metagenomic sequencing. To date, however, little is known about the modulation of GM functions by this dietary regimen. Here, we analyzed the effects of TR feeding on GM functions by evaluating protein expression changes in a rat model through a metaproteomic approach. We observed that TR feeding has a relevant impact on GM functions, specifically leading to an increased abundance of several enzymes involved in carbohydrate and protein metabolism and expressed by Lactobacillus spp. and Akkermansia muciniphila. Taken together, these results contribute to deepening our knowledge about the key relationship between diet, GM, and health.

2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S896-S896
Author(s):  
Benoit Levast ◽  
Cécile Batailler ◽  
Cécile Pouderoux ◽  
Lilia Boucihna ◽  
Sébastien Lustig ◽  
...  

Abstract Background There is growing interest about the deleterious impact of antibiotics on loss of gut symbiosis, called dysbiosis. As patients with BJI require antibiotics usually during 6 to 12 weeks, it is of interest to determine whether dysbiosis is frequent in this population, and if it could potentially reversible or not. Methods Multicentric prospective cohort study in France (EudraCT 2016-003247-10) including patients with 3 categories of BJI: native, osteosynthesis-related and prosthetic joint infection (PJI). At the time of suspicion (V1), at the end of therapy (V2) and then 2 weeks after stopping therapy (V3), blood and fecal samples were collected. Extracted DNA from stool was sequenced using shotgun metagenomic sequencing based on illumina library and Iseq instrumentation. Data run through a dedicated pipeline in order to produce microbiome indexes such as Sympson or Shannon diversities indexes. Gut microbiome and inflammation markers were analyzed including fecal neopterin, a maker of gut inflammation. Results Concerning the 62 patients included (mean age, 60 years; mean duration of antibiotics, 66 days), 27 had native, 14 had osteosynthesis and 21 had PJI. The most frequently prescribed drug was a fluoroquinolone, followed by a third-generation cephalosporin and vancomycin. Stools from 42 of them were analyzed as per protocol. Overall, the mean Shannon richness index decreased from 0.904 at V1 to 0.845 at V2; the Bray-Curtis index underlined the difference in microbiome reconstitution at V3 in comparison with V1. We report significant microbiome loss of diversity at V2, that was reversible at V3 in patients with native BJI and osteosynthesis-related BJI, but not in patients with PJI (figure). Fecal neopterin increased between V1 and V2 (mean 221.6 and 698.1 pmol/g of feces, respectively) and then decreased at V3 (422.5 pmol/g), and could be a potential surrogate marker of gut dysbiosis. Of note, patients with abnormal CRP at the end of antibiotics had high neopterin values, that raises the hypothesis that abnormal CRP at the end of antibiotics could be in relation with gut dysbiosis rather than uncured BJI. Conclusion The impact of antibiotics on the gut microbiota of patients with BJI seems to be significant, especially in patients with PJI who could be candidate for fecal microbiota transplantation. Disclosures All authors: No reported disclosures.


2021 ◽  
Vol 12 ◽  
Author(s):  
Haibo Fu ◽  
Liangzhi Zhang ◽  
Chao Fan ◽  
Chuanfa Liu ◽  
Wenjing Li ◽  
...  

Domestication is a key factor of genetic variation; however, the mechanism by which domestication alters gut microbiota is poorly understood. Here, to explore the variation in the structure, function, rapidly evolved genes (REGs), and enzyme profiles of cellulase and hemicellulose in fecal microbiota, we studied the fecal microbiota in wild, half-blood, and domestic yaks based on 16S rDNA sequencing, shotgun-metagenomic sequencing, and the measurement of short-chain-fatty-acids (SCFAs) concentration. Results indicated that wild and half-blood yaks harbored an increased abundance of the phylum Firmicutes and reduced abundance of the genus Akkermansia, which are both associated with efficient energy harvesting. The gut microbial diversity decreased in domestic yaks. The results of the shotgun-metagenomic sequencing showed that the wild yak harbored an increased abundance of microbial pathways that play crucial roles in digestion and growth of the host, whereas the domestic yak harbored an increased abundance of methane-metabolism-related pathways. Wild yaks had enriched amounts of REGs in energy and carbohydrate metabolism pathways, and possessed a significantly increased abundance of cellulases and endohemicellulases in the glycoside hydrolase family compared to domestic yaks. The concentrations of acetic, propionic, n-butyric, i-butyric, n-valeric, and i-valeric acid were highest in wild yaks. Our study displayed the domestic effect on the phenotype of composition, function in gut microbiota, and SCFAs associated with gut microbiota, which had a closely association with the growth performance of the livestock. These findings may enlighten the researchers to construct more links between economic characteristics and gut microbiota, and develop new commercial strains in livestock based on the biotechnology of gut microbiota.


Nutrients ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2193 ◽  
Author(s):  
Harrison B. Taylor ◽  
Radhika Gudi ◽  
Robert Brown ◽  
Chenthamarakshan Vasu

Previously, we have shown that oral administration of yeast derived β-1,3/1,6-d-glucan enhances immune regulation and alters the composition of the gut microbiota. However, it is not known if other structurally distinct β-glucans have similar properties. Here, using C57BL/6 mice, we show the potential of a microalgae derived β-1,3-d-glucan, paramylon (PM), in shaping the gut microbiota and modulating the susceptibility to colitis. The community structure within the gut microbiota showed progressive changes including selective enrichment of specific communities and lowered community richness and diversity during prolonged oral treatment with PM. Compared to control mice, the gut microbiota of PM-treated mice had significantly higher abundance of Verrucomicrobia and lower abundance of Firmicutes. Specific taxa that were significantly more abundant in PM-treated mice include Akkermansia muciniphila and several Bacteroides members. Predictive functional analysis revealed overrepresentation of carbohydrate metabolism function in the fecal microbiota of PM recipients compared to controls, and this function was linked to Bacteroides spp. Prolonged pretreatment with PM not only diminished susceptibility to dextran sulfate sodium induced colitis severity, but also caused enhanced immune regulation. Overall, this study demonstrates the prebiotic properties of PM and the potential benefits of its prolonged oral consumption to gut health.


2020 ◽  
Vol 7 ◽  
Author(s):  
Xupeng Yuan ◽  
Jiahao Yan ◽  
Ruizhi Hu ◽  
Yanli Li ◽  
Ying Wang ◽  
...  

Recent evidences suggest that gut microbiota plays an important role in regulating physiological and metabolic activities of pregnant sows, and β-carotene has a potentially positive effect on reproduction, but the impact of β-carotene on gut microbiota in pregnant sows remains unknown. This study aimed to explore the effect and mechanisms of β-carotene on the reproductive performance of sows from the aspect of gut microbiota. A total of 48 hybrid pregnant sows (Landrace × Yorkshire) with similar parity were randomly allocated into three groups (n = 16) and fed with a basal diet or a diet containing 30 or 90 mg/kg of β-carotene from day 90 of gestation until parturition. Dietary supplementation of 30 or 90 mg/kg β-carotene increased the number of live birth to 11.82 ± 1.54 and 12.29 ± 2.09, respectively, while the control group was 11.00 ± 1.41 (P = 0.201). Moreover, β-carotene increased significantly the serum nitric oxide (NO) level and glutathione peroxidase (GSH-Px) activity (P < 0.05). Characterization of fecal microbiota revealed that 90 mg/kg β-carotene increased the diversity of the gut flora (P < 0.05). In particular, β-carotene decreased the relative abundance of Firmicutes including Lachnospiraceae AC2044 group, Lachnospiraceae NK4B4 group and Ruminococcaceae UCG-008, but enriched Proteobacteria including Bilophila and Sutterella, and Actinobacteria including Corynebacterium and Corynebacterium 1 which are related to NO synthesis. These data demonstrated that dietary supplementation of β-carotene may increase antioxidant enzyme activity and NO, an important vasodilator to promote the neonatal blood circulation, through regulating gut microbiota in sows.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 145
Author(s):  
Julio Plaza-Díaz ◽  
Patricio Solis-Urra ◽  
Jerónimo Aragón-Vela ◽  
Fernando Rodríguez-Rodríguez ◽  
Jorge Olivares-Arancibia ◽  
...  

Non-alcoholic fatty liver disease (NAFLD) is an increasing cause of chronic liver illness associated with obesity and metabolic disorders, such as hypertension, dyslipidemia, or type 2 diabetes mellitus. A more severe type of NAFLD, non-alcoholic steatohepatitis (NASH), is considered an ongoing global health threat and dramatically increases the risks of cirrhosis, liver failure, and hepatocellular carcinoma. Several reports have demonstrated that liver steatosis is associated with the elevation of certain clinical and biochemical markers but with low predictive potential. In addition, current imaging methods are inaccurate and inadequate for quantification of liver steatosis and do not distinguish clearly between the microvesicular and the macrovesicular types. On the other hand, an unhealthy status usually presents an altered gut microbiota, associated with the loss of its functions. Indeed, NAFLD pathophysiology has been linked to lower microbial diversity and a weakened intestinal barrier, exposing the host to bacterial components and stimulating pathways of immune defense and inflammation via toll-like receptor signaling. Moreover, this activation of inflammation in hepatocytes induces progression from simple steatosis to NASH. In the present review, we aim to: (a) summarize studies on both human and animals addressed to determine the impact of alterations in gut microbiota in NASH; (b) evaluate the potential role of such alterations as biomarkers for prognosis and diagnosis of this disorder; and (c) discuss the involvement of microbiota in the current treatment for NAFLD/NASH (i.e., bariatric surgery, physical exercise and lifestyle, diet, probiotics and prebiotics, and fecal microbiota transplantation).


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Hong Zheng ◽  
Pengtao Xu ◽  
Qiaoying Jiang ◽  
Qingqing Xu ◽  
Yafei Zheng ◽  
...  

Abstract Background Modification of the gut microbiota has been reported to reduce the incidence of type 1 diabetes mellitus (T1D). We hypothesized that the gut microbiota shifts might also have an effect on cognitive functions in T1D. Herein we used a non-absorbable antibiotic vancomycin to modify the gut microbiota in streptozotocin (STZ)-induced T1D mice and studied the impact of microbial changes on cognitive performances in T1D mice and its potential gut-brain neural mechanism. Results We found that vancomycin exposure disrupted the gut microbiome, altered host metabolic phenotypes, and facilitated cognitive impairment in T1D mice. Long-term acetate deficiency due to depletion of acetate-producing bacteria resulted in the reduction of synaptophysin (SYP) in the hippocampus as well as learning and memory impairments. Exogenous acetate supplement or fecal microbiota transplant recovered hippocampal SYP level in vancomycin-treated T1D mice, and this effect was attenuated by vagal inhibition or vagotomy. Conclusions Our results demonstrate the protective role of microbiota metabolite acetate in cognitive functions and suggest long-term acetate deficiency as a risk factor of cognitive decline.


2019 ◽  
Author(s):  
Feng Zhu ◽  
Yanmei Ju ◽  
Wei Wang ◽  
Qi Wang ◽  
Ruijin Guo ◽  
...  

AbstractEmerging evidence has linked the gut microbiota to schizophrenia. However, the functional changes in the gut microbiota and the biological role of individual bacterial species in schizophrenia have not been explored systematically. Here, we characterized the gut microbiota in schizophrenia using shotgun metagenomic sequencing of feces from a discovery cohort of 90 drug-free patients and 81 controls, as well as a validation cohort of 45 patients taking antipsychotics and 45 controls. We screened 83 schizophrenia-associated bacterial species and constructed a classifier comprising 26 microbial biomarkers that distinguished patients from controls with a 0.896 area under the receiver operating characteristics curve (AUC) in the discovery cohort and 0.765 AUC in the validation cohort. Our analysis of fecal metagenomes revealed that schizophrenia-associated gut–brain modules included short-chain fatty acids synthesis, tryptophan metabolism, and synthesis/degradation of neurotransmitters including glutamate, γ-aminobutyric acid, and nitric oxide. The schizophrenia-enriched gut bacterial species include several oral cavity-resident microbes, such as Streptococcus vestibularis. We transplanted Streptococcus vestibularis into the gut of the mice with antibiotic-induced microbiota depletion to explore its functional role. We observed that this microbe transiently inhabited the mouse gut and this was followed by hyperactivity and deficit in social behaviors, accompanied with altered neurotransmitter levels in peripheral tissues. In conclusion, our study identified 26 schizophrenia-associated bacterial species representing potential microbial targets for future treatment, as well as gut–brain modules, some of which may give rise to new microbial metabolites involved in the development of schizophrenia.


2020 ◽  
Vol 59 (8) ◽  
pp. 3347-3368
Author(s):  
J. R. Swann ◽  
M. Rajilic-Stojanovic ◽  
A. Salonen ◽  
O. Sakwinska ◽  
C. Gill ◽  
...  

AbstractWith the growing appreciation for the influence of the intestinal microbiota on human health, there is increasing motivation to design and refine interventions to promote favorable shifts in the microbiota and their interactions with the host. Technological advances have improved our understanding and ability to measure this indigenous population and the impact of such interventions. However, the rapid growth and evolution of the field, as well as the diversity of methods used, parameters measured and populations studied, make it difficult to interpret the significance of the findings and translate their outcomes to the wider population. This can prevent comparisons across studies and hinder the drawing of appropriate conclusions. This review outlines considerations to facilitate the design, implementation and interpretation of human gut microbiota intervention studies relating to foods based upon our current understanding of the intestinal microbiota, its functionality and interactions with the human host. This includes parameters associated with study design, eligibility criteria, statistical considerations, characterization of products and the measurement of compliance. Methodologies and markers to assess compositional and functional changes in the microbiota, following interventions are discussed in addition to approaches to assess changes in microbiota–host interactions and host responses. Last, EU legislative aspects in relation to foods and health claims are presented. While it is appreciated that the field of gastrointestinal microbiology is rapidly evolving, such guidance will assist in the design and interpretation of human gut microbiota interventional studies relating to foods.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hao-Ming Xu ◽  
Hong-Li Huang ◽  
Jing Xu ◽  
Jie He ◽  
Chong Zhao ◽  
...  

Fecal microbiota transplantation (FMT) can inhibit the progression of ulcerative colitis (UC). However, how FMT modulates the gut microbiota and which biomarker is valuable for evaluating the efficacy of FMT have not been clarified. This study aimed to determine the changes in the gut microbiota and their relationship with butyric acid following FMT for UC. Fecal microbiota (FM) was isolated from healthy individuals or mice and transplanted into 12 UC patients or colitis mice induced by dextran sulfate sodium (DSS). Their clinical colitis severities were monitored. Their gut microbiota were analyzed by 16S sequencing and bioinformatics. The levels of fecal short-chain fatty acids (SCFAs) from five UC patients with recurrent symptoms after FMT and individual mice were quantified by liquid chromatography–mass spectrometry (LC–MS). The impact of butyric acid on the abundance and diversity of the gut microbiota was tested in vitro. The effect of the combination of butyric acid-producing bacterium and FMT on the clinical responses of 45 UC patients was retrospectively analyzed. Compared with that in the controls, the FMT significantly increased the abundance of butyric acid-producing bacteria and fecal butyric acid levels in UC patients. The FMT significantly increased the α-diversity, changed gut microbial structure, and elevated fecal butyric acid levels in colitis mice. Anaerobic culture with butyrate significantly increased the α-diversity of the gut microbiota from colitis mice and changed their structure. FMT combination with Clostridium butyricum-containing probiotics significantly prolonged the UC remission in the clinic. Therefore, fecal butyric acid level may be a biomarker for evaluating the efficacy of FMT for UC, and addition of butyrate-producing bacteria may prolong the therapeutic effect of FMT on UC by changing the gut microbiota.


Sign in / Sign up

Export Citation Format

Share Document