scholarly journals Identification of gut microbiome markers for schizophrenia delineates a potential role of Streptococcus

2019 ◽  
Author(s):  
Feng Zhu ◽  
Yanmei Ju ◽  
Wei Wang ◽  
Qi Wang ◽  
Ruijin Guo ◽  
...  

AbstractEmerging evidence has linked the gut microbiota to schizophrenia. However, the functional changes in the gut microbiota and the biological role of individual bacterial species in schizophrenia have not been explored systematically. Here, we characterized the gut microbiota in schizophrenia using shotgun metagenomic sequencing of feces from a discovery cohort of 90 drug-free patients and 81 controls, as well as a validation cohort of 45 patients taking antipsychotics and 45 controls. We screened 83 schizophrenia-associated bacterial species and constructed a classifier comprising 26 microbial biomarkers that distinguished patients from controls with a 0.896 area under the receiver operating characteristics curve (AUC) in the discovery cohort and 0.765 AUC in the validation cohort. Our analysis of fecal metagenomes revealed that schizophrenia-associated gut–brain modules included short-chain fatty acids synthesis, tryptophan metabolism, and synthesis/degradation of neurotransmitters including glutamate, γ-aminobutyric acid, and nitric oxide. The schizophrenia-enriched gut bacterial species include several oral cavity-resident microbes, such as Streptococcus vestibularis. We transplanted Streptococcus vestibularis into the gut of the mice with antibiotic-induced microbiota depletion to explore its functional role. We observed that this microbe transiently inhabited the mouse gut and this was followed by hyperactivity and deficit in social behaviors, accompanied with altered neurotransmitter levels in peripheral tissues. In conclusion, our study identified 26 schizophrenia-associated bacterial species representing potential microbial targets for future treatment, as well as gut–brain modules, some of which may give rise to new microbial metabolites involved in the development of schizophrenia.

2021 ◽  
Vol 11 (4) ◽  
pp. 298
Author(s):  
Andrea Piccioni ◽  
Laura Franza ◽  
Mattia Brigida ◽  
Christian Zanza ◽  
Enrico Torelli ◽  
...  

How can the knowledge of probiotics and their mechanisms of action be translated into clinical practice when treating patients with diverticular disease and acute diverticulitis? Changes in microbiota composition have been observed in patients who were developing acute diverticulitis, with a reduction of taxa with anti-inflammatory activity, such as Clostridium cluster IV, Lactobacilli and Bacteroides. Recent observations supported that a dysbiosis characterised by decreased presence of anti-inflammatory bacterial species might be linked to mucosal inflammation, and a vicious cycle results from a mucosal inflammation driving dysbiosis at the same time. An alteration in gut microbiota can lead to an altered activation of nerve fibres, and subsequent neuronal and muscular dysfunction, thus favoring abdominal symptoms’ development. The possible role of dysbiosis and mucosal inflammation in leading to dysmotility is linked, in turn, to bacterial translocation from the lumen of the diverticulum to perivisceral area. There, a possible activation of Toll-like receptors has been described, with a subsequent inflammatory reaction at the level of the perivisceral tissues. Being aware that bacterial colonisation of diverticula is involved in the pathogenesis of acute diverticulitis, the rationale for the potential role of probiotics in the treatment of this disease becomes clearer. For this review, articles were identified using the electronic PubMed database through a comprehensive search conducted by combining key terms such as “gut microbiota”, “probiotics and gut disease”, “probiotics and acute diverticulitis”, “probiotics and diverticular disease”, “probiotics mechanism of action”. However, the amount of data present on this matter is not sufficient to draw robust conclusions on the efficacy of probiotics for symptoms’ management in diverticular disease.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 396
Author(s):  
Ewa Sajnaga ◽  
Marcin Skowronek ◽  
Agnieszka Kalwasińska ◽  
Waldemar Kazimierczak ◽  
Karolina Ferenc ◽  
...  

This study focused on the potential relationships between midgut microbiota of the common cockchafer Melolontha melolontha larvae and their resistance to entomopathogenic nematodes (EPN) infection. We investigated the bacterial community associated with control and unsusceptible EPN-exposed insects through nanopore sequencing of the 16S rRNA gene. Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes were the most abundant bacterial phyla within the complex and variable midgut microbiota of the wild M. melolontha larvae. The core microbiota was found to include 82 genera, which accounted for 3.4% of the total number of identified genera. The EPN-resistant larvae differed significantly from the control ones in the abundance of many genera belonging to the Actinomycetales, Rhizobiales, and Clostridiales orders. Additionally, the analysis of the microbiome networks revealed different sets of keystone midgut bacterial genera between these two groups of insects, indicating differences in the mutual interactions between bacteria. Finally, we detected Xenorhabdus and Photorhabdus as gut residents and various bacterial species exhibiting antagonistic activity against these entomopathogens. This study paves the way to further research aimed at unravelling the role of the host gut microbiota on the output of EPN infection, which may contribute to enhancement of the efficiency of nematodes used in eco-friendly pest management.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nathella Pavan Kumar ◽  
Syed Hissar ◽  
Kannan Thiruvengadam ◽  
Velayuthum V. Banurekha ◽  
N. Suresh ◽  
...  

Pediatric TB poses challenge in diagnosis due to the paucibacillary nature of the disease. We conducted a prospective diagnostic study to identify immune biomarkers of pediatric TB and controls (discovery cohort) and obtained a separate “validation” cohort of confirmed cases of pediatric TB and controls. Multiplex ELISA was performed to examine the plasma levels of cytokines. Discovery and validation cohorts revealed that baseline plasma levels of IFNγ, TNFα, IL-2, and IL-17A were significantly higher in active TB (confirmed TB and unconfirmed TB) in comparison to unlikely TB children. Receiver operating characteristics (ROC) curve analysis revealed that IFNγ, IL-2, TNFα, and IL-17A (in the discovery cohort) and TNFα and IL-17A (in the validation cohort) could act as biomarkers distinguishing confirmed or unconfirmed TB from unlikely TB with the sensitivity and specificity of more than 90%. In the discovery cohort, cytokines levels were significantly diminished following anti-tuberculosis treatment. In both the cohorts, combiROC models offered 100% sensitivity and 98% to 100% specificity for a three-cytokine signature of TNFα, IL-2, and IL-17A, which can distinguish confirmed or unconfirmed TB children from unlikely TB. Thus, a baseline cytokine signature of TNFα, IL-2, and IL-17A could serve as an accurate biomarker for the diagnosis of pediatric tuberculosis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jianmin Wu ◽  
Shan Wang ◽  
Bo Zheng ◽  
Xinyao Qiu ◽  
Hongyang Wang ◽  
...  

Accumulating evidence demonstrated the crucial role of gut microbiota in many human diseases, including cancer. Checkpoint inhibitor therapy has emerged as a novel treatment and has been clinically accepted as a major therapeutic strategy for cancer. Gut microbiota is related to cancer and the effect of immune checkpoint inhibitors (ICIs), and supplement with specific bacterial species can restore or enhance the responses to the ICIs. Namely, specified bacteria can serve as the biomarkers for distinguishing the patient who will respond to ICIs and determine the effectiveness of ICIs, as well as predicting the efficacy of checkpoint inhibitor immunotherapy. Regardless of the significant findings, the relationship between gut microbiota and the effect of ICIs treatment needs a more thorough understanding to provide more effective therapeutic plans and reduce treatment complication. In this review, we summarized the role of gut microbiota played in immune system and cancer. We mainly focus on the relationship between gut microbiota and the checkpoint inhibitor immunotherapy.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Antonio Palomba ◽  
Alessandro Tanca ◽  
Marcello Abbondio ◽  
Rosangela Sau ◽  
Monica Serra ◽  
...  

AbstractDiet is a key factor influencing gut microbiota (GM) composition and functions, which in turn affect host health. Among dietary regimens, time-restricted (TR) feeding has been associated to numerous health benefits. The impact of TR feeding on the GM composition has been mostly explored by means of metagenomic sequencing. To date, however, little is known about the modulation of GM functions by this dietary regimen. Here, we analyzed the effects of TR feeding on GM functions by evaluating protein expression changes in a rat model through a metaproteomic approach. We observed that TR feeding has a relevant impact on GM functions, specifically leading to an increased abundance of several enzymes involved in carbohydrate and protein metabolism and expressed by Lactobacillus spp. and Akkermansia muciniphila. Taken together, these results contribute to deepening our knowledge about the key relationship between diet, GM, and health.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 18-18
Author(s):  
Feng-Qi Liu ◽  
Qi Chen ◽  
Qingyuan Qu ◽  
Xueyan Sun ◽  
Qiu-Sha Huang ◽  
...  

Abstract Introduction Growing evidence has implicated gut microbiota in the pathogenesis of immune thrombocytopenia (ITP). In a previous research study, we found dysbiosis in the phylogenetic composition and function of gut microbiome in ITP and that corticosteroid treatment may have a strong effect on gut microbiota [Sci China Life Sci, 2020]. Corticosteroids have been widely used in the initial treatment of newly diagnosed ITP patients, but most adult patients relapse upon cessation of steroid treatment. Patients on agents in subsequent therapy may improve at any time, but which patients improve and when is unpredictable. The gut microbiome has been increasingly used in the assessment and prediction of immunomodulatory therapy in autoimmune diseases and cellular immunotherapy in cancers. Here, we provide evidence that gut microbiota and function signatures can be used to predict immune thrombocytopenia patients at high risk of relapse/resistance after corticosteroid treatment and to identify patients that are more likely to benefit from TPO-RAs in subsequent therapy. Methods Seventy-five fecal samples from 60 patients with newly diagnosed ITP (60 specimens before corticosteroid therapy and 15 specimens after corticosteroid therapy) and 41 samples from persistent/chronic ITP before and after treatment with TPO-RAs, including eltrombopag and avatrombopag were collected for deep shotgun metagenomic sequencing. To identify the microbial biomarkers related to relapse/resistance after corticosteroid treatment, we constructed a random forest classifier using machine learning to determine the risk of relapse/resistance of a training cohort of 30 patients from baseline samples and validated the classifier for 30 patients. Patients with persistent/chronic ITP were divided into responders and nonresponders according to their response to TPO-RA treatment in subsequent therapy. After identifying the microbial species and functional biomarkers related to the response to TPO-RA therapy, a random forest classifier was constructed using a training set of 20 patients and validated using a validation set of 21 patients. Results We used a metagenomic sequencing technique to investigate the differences among gut microbiota associated with relapse within 3 months of corticosteroid treatment. We observed that the diversity and composition of the microbial community in ITP patients after corticosteroid therapy (Post-C) changed significantly from the baseline (Pre-C), whereas the gut microbiota of the remission group was similar to that of the HC group, which implies that a shift in the gut microbiome could represent a return to homeostasis. To identify the microbial biomarkers related to early relapse after corticosteroid treatment, the Pre-C samples were divided into a remission group and a resistant/relapse group according to the response to corticosteroid therapy within 3 months. Nine significant associations with the microbial species and function were identified between the remission and resistant/relapse groups. A risk index built from this panel of microbes and functional pathways was used to differentiate remission from resistant/relapsed patients based on the baseline characteristics. The receiver operating characteristic (ROC) curve demonstrated that the risk index was a strong predictor of treatment response, with an area under the curve (AUC) of 0.87. Furthermore, to predict the response to TPO-RAs in subsequent therapy, the baseline gut microbiomes of responders and nonresponders before TPO-RA treatment were compared. Patients who responded to treatment exhibited an increase in Ruminococcaceae, Clostridiaceae and Bacteroides compared to nonresponders, with elevated abundance of the phosphotransferase system, tyrosine metabolism and secondary bile acid biosynthesis pathways according to KEGG analysis. Our prediction model based on the gut microbiome for TPO-RA response was robust across the cohorts and showed 89.5% and 79.2% prediction accuracy for persistent/chronic ITP patients in the training and validation sets, respectively. Conclusions The gut microbiome and function signatures based on machine learning analysis are novel potential biomarkers for predicting resistance/relapse after corticosteroid treatment and response to TPO-RAs, which may have important manifestations in the clinical. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 8 (7) ◽  
pp. 987 ◽  
Author(s):  
Lee ◽  
Byun ◽  
Kim

Acne is a highly prevalent inflammatory skin condition involving sebaceous sties. Although it clearly develops from an interplay of multiple factors, the exact cause of acne remains elusive. It is increasingly believed that the interaction between skin microbes and host immunity plays an important role in this disease, with perturbed microbial composition and activity found in acne patients. Cutibacterium acnes (C. acnes; formerly called Propionibacterium acnes) is commonly found in sebum-rich areas and its over-proliferation has long been thought to contribute to the disease. However, information provided by advanced metagenomic sequencing has indicated that the cutaneous microbiota in acne patients and acne-free individuals differ at the virulent-specific lineage level. Acne also has close connections with the gastrointestinal tract, and many argue that the gut microbiota could be involved in the pathogenic process of acne. The emotions of stress (e.g., depression and anxiety), for instance, have been hypothesized to aggravate acne by altering the gut microbiota and increasing intestinal permeability, potentially contributing to skin inflammation. Over the years, an expanding body of research has highlighted the presence of a gut–brain–skin axis that connects gut microbes, oral probiotics, and diet, currently an area of intense scrutiny, to acne severity. This review concentrates on the skin and gut microbes in acne, the role that the gut–brain–skin axis plays in the immunobiology of acne, and newly emerging microbiome-based therapies that can be applied to treat acne.


mBio ◽  
2017 ◽  
Vol 8 (6) ◽  
Author(s):  
Margaret I. Steele ◽  
Waldan K. Kwong ◽  
Marvin Whiteley ◽  
Nancy A. Moran

ABSTRACT Microbial communities are shaped by interactions among their constituent members. Some Gram-negative bacteria employ type VI secretion systems (T6SSs) to inject protein toxins into neighboring cells. These interactions have been theorized to affect the composition of host-associated microbiomes, but the role of T6SSs in the evolution of gut communities is not well understood. We report the discovery of two T6SSs and numerous T6SS-associated Rhs toxins within the gut bacteria of honey bees and bumble bees. We sequenced the genomes of 28 strains of Snodgrassella alvi, a characteristic bee gut microbe, and found tremendous variability in their Rhs toxin complements: altogether, these strains appear to encode hundreds of unique toxins. Some toxins are shared with Gilliamella apicola, a coresident gut symbiont, implicating horizontal gene transfer as a source of toxin diversity in the bee gut. We use data from a transposon mutagenesis screen to identify toxins with antibacterial function in the bee gut and validate the function and specificity of a subset of these toxin and immunity genes in Escherichia coli. Using transcriptome sequencing, we demonstrate that S. alvi T6SSs and associated toxins are upregulated in the gut environment. We find that S. alvi Rhs loci have a conserved architecture, consistent with the C-terminal displacement model of toxin diversification, with Rhs toxins, toxin fragments, and cognate immunity genes that are expressed and confer strong fitness effects in vivo. Our findings of T6SS activity and Rhs toxin diversity suggest that T6SS-mediated competition may be an important driver of coevolution within the bee gut microbiota. IMPORTANCE The structure and composition of host-associated bacterial communities are of broad interest, because these communities affect host health. Bees have a simple, conserved gut microbiota, which provides an opportunity to explore interactions between species that have coevolved within their host over millions of years. This study examined the role of type VI secretion systems (T6SSs)—protein complexes used to deliver toxic proteins into bacterial competitors—within the bee gut microbiota. We identified two T6SSs and diverse T6SS-associated toxins in bacterial strains from bees. Expression of these genes is increased in bacteria in the bee gut, and toxin and immunity genes demonstrate antibacterial and protective functions, respectively, when expressed in Escherichia coli. Our results suggest that coevolution among bacterial species in the bee gut has favored toxin diversification and maintenance of T6SS machinery, and demonstrate the importance of antagonistic interactions within host-associated microbial communities. IMPORTANCE The structure and composition of host-associated bacterial communities are of broad interest, because these communities affect host health. Bees have a simple, conserved gut microbiota, which provides an opportunity to explore interactions between species that have coevolved within their host over millions of years. This study examined the role of type VI secretion systems (T6SSs)—protein complexes used to deliver toxic proteins into bacterial competitors—within the bee gut microbiota. We identified two T6SSs and diverse T6SS-associated toxins in bacterial strains from bees. Expression of these genes is increased in bacteria in the bee gut, and toxin and immunity genes demonstrate antibacterial and protective functions, respectively, when expressed in Escherichia coli. Our results suggest that coevolution among bacterial species in the bee gut has favored toxin diversification and maintenance of T6SS machinery, and demonstrate the importance of antagonistic interactions within host-associated microbial communities.


mBio ◽  
2016 ◽  
Vol 7 (5) ◽  
Author(s):  
Gili Aviv ◽  
Galia Rahav ◽  
Ohad Gal-Mor

ABSTRACT Salmonella enterica serovar Infantis is one of the prevalent salmonellae worldwide. Recently, we showed that the emergence of S . Infantis in Israel was facilitated by the acquisition of a unique megaplasmid (pESI) conferring multidrug resistance and increased virulence phenotypes. Here we elucidate the ecology, transmission properties, and regulation of pESI. We show that despite its large size (~280 kb), pESI does not impose a significant metabolic burden in vitro and that it has been recently fixed in the domestic S . Infantis population. pESI conjugation and the transcription of its pilus ( pil ) genes are inhibited at the ambient temperature (27°C) and by ≥1% bile but increased under temperatures of 37 to 41°C, oxidative stress, moderate osmolarity, and the microaerobic conditions characterizing the intestinal environment of warm-blooded animals. The pESI-encoded protein TraB and the oxygen homeostasis regulator Fnr were identified as transcriptional regulators of pESI conjugation. Using the mouse model, we show that following S . Infantis infection, pESI can be horizontally transferred to the gut microbiota, including to commensal Escherichia coli strains. Possible transfer, but not persistence, of pESI was also observed into Gram-positive mouse microbiota species, especially Lactobacillus reuteri . Moreover, pESI was demonstrated to further disseminate from gut microbiota to S. enterica serovar Typhimurium, in the context of gastrointestinal infection. These findings exhibit the ability of a selfish clinically relevant megaplasmid to distribute to and from the microbiota and suggest an overlooked role of the microbiota as a reservoir of mobile genetic elements and intermediator in the spread of resistance and virulence genes between commensals and pathogenic bacteria. IMPORTANCE Plasmid conjugation plays a key role in microbial evolution, enabling the acquisition of new phenotypes, including resistance and virulence. Salmonella enterica serovar Infantis is one of the ubiquitous salmonellae worldwide and a major cause of foodborne infections. Previously, we showed that the emergence of S . Infantis in Israel has involved the acquisition of a unique megaplasmid (pESI) conferring multidrug resistance and increased virulence phenotypes. Recently, the emergence of another S . Infantis strain carrying a pESI-like plasmid was identified in Italy, suggesting that the acquisition of pESI may be common to different emergent S . Infantis populations globally. Transmission of this plasmid to other strains or bacterial species is an alarming scenario. Understanding the ecology, regulation, and transmission properties of clinically relevant plasmids and the role of the microbiota in their spreading offers a new mechanism explaining the emergence of new pathogenic and resistant biotypes and may assist in the development of appropriate surveillance and prevention measures.


2021 ◽  
Vol 22 (9) ◽  
pp. 4692
Author(s):  
Anna Ferrulli ◽  
Lorenzo Drago ◽  
Sara Gandini ◽  
Stefano Massarini ◽  
Federica Bellerba ◽  
...  

Growing evidence highlights the crucial role of gut microbiota in affecting different aspects of obesity. Considering the ability of deep transcranial magnetic stimulation (dTMS) to modulate the cortical excitability, the reward system, and, indirectly, the autonomic nervous system (ANS), we hypothesized a potential role of dTMS in affecting the brain-gut communication pathways, and the gut microbiota composition in obesity. In a hospital setting, 22 subjects with obesity (5 M, 17 F; 44.9 ± 2.2 years; BMI 37.5 ± 1.0 kg/m2) were randomized into three groups receiving 15 sessions (3 per week for 5 weeks) of high frequency (HF), low frequency (LF) dTMS, or sham stimulation. Fecal samples were collected at baseline and after 5 weeks of treatment. Total bacterial DNA was extracted from fecal samples using the QIAamp DNA Stool Mini Kit (Qiagen, Italy) and analyzed by a metagenomics approach (Ion Torrent Personal Genome Machine). After 5 weeks, a significant weight loss was found in HF (HF: −4.1 ± 0.8%, LF: −1.9 ± 0.8%, sham: −1.3 ± 0.6%, p = 0.042) compared to LF and sham groups, associated with a decrease in norepinephrine compared to baseline (HF: −61.5 ± 15.2%, p < 0.01; LF: −31.8 ± 17.1%, p < 0.05; sham: −35.8 ± 21.0%, p > 0.05). Furthermore, an increase in Faecalibacterium (+154.3% vs. baseline, p < 0.05) and Alistipes (+153.4% vs. baseline, p < 0.05) genera, and a significant decrease in Lactobacillus (−77.1% vs. baseline, p < 0.05) were found in HF. Faecalibacterium variations were not significant compared to baseline in the other two groups (LF: +106.6%, sham: +27.6%; p > 0.05) as well as Alistipes (LF: −54.9%, sham: −15.1%; p > 0.05) and Lactobacillus (LF: −26.0%, sham: +228.3%; p > 0.05) variations. Norepinephrine change significantly correlated with Bacteroides (r2 = 0.734; p < 0.05), Eubacterium (r2 = 0.734; p < 0.05), and Parasutterella (r2 = 0.618; p < 0.05) abundance variations in HF. In conclusion, HF dTMS treatment revealed to be effective in modulating gut microbiota composition in subjects with obesity, reversing obesity-associated microbiota variations, and promoting bacterial species representative of healthy subjects with anti-inflammatory properties.


Sign in / Sign up

Export Citation Format

Share Document