scholarly journals Maize leaf-removal: A new agronomic approach to increase dry matter, flower number and seed-yield of soybean in maize soybean relay intercropping system

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Muhammad Ali Raza ◽  
Ling Yang Feng ◽  
Wopke van der Werf ◽  
Nasir Iqbal ◽  
Muhammad Hayder Bin Khalid ◽  
...  

Abstract Shading conditions adversely affect flower-number and pod-number of soybeans under maize-soybean relay-intercropping (MSR). Here we reveal that leaf-removal from maize-canopy improves the photosynthetically active radiation (PAR) transmittance and dry-matter production (DMP) of soybean (especially during the co-growth phase), and compensates the maize seed-yield loss by considerably increasing soybean seed-yield. In a two-year experiment with MSR, maize-plants were subjected to different leaf-removal treatments to increase the PAR-transmittance of soybean; removal of the topmost two-leaves (R2), four-leaves (R4), six-leaves (R6), with no-removal of leaves (R0). Leaf-removal treatments improved the PAR-transmittance, photosynthetic-rate, and morphological-characteristics of soybean under MSR. At 90 days after sowing, the dry-matter of pods, and seeds was increased by 25%, and 32%, respectively under R6 than R0. Importantly, enhanced PAR-transmittance and DMP under R6 enabled soybean to initiate a greater number of flowers 182.2 plant−1 compared to 142.7 plant−1 under R0, and it also decreased the flower-abscission (by 13%, from 54.9% under R0 to 47.6% under R6). These positive responses increased the pod-number by 49% and seed-number by 28% under R6 than R0. Overall, under R6, relay-intercropped soybean produced 78% of sole-soybean seed-yield, and relay-intercropped maize produced 81% of sole-maize seed-yield and achieved the land equivalent ratio of 1.59.

Agronomy ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 282 ◽  
Author(s):  
Shoaib Ahmed ◽  
Muhammad Raza ◽  
Tao Zhou ◽  
Sajad Hussain ◽  
Muhammad Khalid ◽  
...  

Soybean production under maize–soybean relay-intercropping system (MSICS) is vulnerable to shading. A study was initiated to investigate the effects of three sowing-times: ST1, 90; ST2, 70; and ST3, 50 days of co-growth period and two phosphorus-rates: P0, 0; and P60, 60 kg P ha−1 on soybean under MSICS. Results revealed that ST3 significantly increased the photosynthetically active radiations, leaf area index, and photosynthetic rate by 72% and 58%, and 61% and 38%, and 6% and 8%, respectively, at full-flowering and full-pod stage of soybean than ST1. Treatment ST3, increased the total dry-matter (TDM) and the highest TDM was reached at full-seed (R6) stage. Similarly, ST3 considerably increased the dry-matter partitioning to pods and seeds, relative to ST1, soybean under ST3 at R6 had 35% and 30% higher pod and seed dry-matter, respectively. Moreover, ST3 exhibited the maximum seed-yield (mean 1829.5 kg ha−1) for both years of this study. Soybean under ST3 with P60 accumulated 38% higher P, and increased the P content in pods and seeds by 36% and 33%, respectively at R6 than ST1. These results imply that by selecting the appropriate sowing-time and phosphorus-rate for soybean, we can increase the TDM and seed-yield of soybean under MSICS.


2019 ◽  
Vol 17 (1) ◽  
pp. 33-38
Author(s):  
Swapan Kumar Paul ◽  
Mosa Morsheda Khatun ◽  
Md Abdur Rahman Sarkar

Sulphur is a component of plant amino acids, proteins, vitamins, and enzyme structures which influence the productivity of oil seed and total oil content. The experiment was conducted to find out the effect of sulphur on the seed yield and oil content of sesame in Bangladesh. The experiment comprised three varieties of sesame viz. Binatil-2, Binatil-3 and BARI Til-4 and six levels of sulphur (S) viz. 0, 10, 20, 30, 40 and 50 kg S ha–1. The experiment was laid out in a randomized complete block design with three replications. Dry matter production, crop characters, yield components, seed yield and oil content were significantly influenced by variety, level of sulphur and their interaction. The highest dry matter production plant–1 at 50 DAS (17.56 g), plant height (101.3 cm), number of branches plant–1 (3.66),  number of pods plant-1 (41.56), number of seeds pod-1 (58.83),  seed yield    (747.2 kg ha-1), stover yield (2243.0 kg ha–1) and oil content (40.03%) were obtained in BARI Til-4 while the corresponding lowest values of all parameters were recorded in Binatil-2. In case of sulphur application, the highest dry matter production plant–1 at 50 DAS (20.81 g), plant height (109.7 cm), number of branches plant–1 (3.87),  number of pods plant–1 (46.13),  number of seeds pod-1 (56.67),  seed yield (800.0 kg ha–1), stover yield (2787 kg ha–1 ) and oil content (43.97%) were obtained when crop was fertilized with 30 kg S ha–1 while the lowest seed yield (502.2 kg ha–1), stover yield (1550.0 kg ha–1) and oil content (32.80%) were obtained in control (0 kg S ha–1). BARI Til-4 fertilized with 30 kg S ha–1 produced the highest dry matter plant–1 at 50 DAS (24.80 g), number of pods plant–1 (51.13), seeds pod–1 (62.0) and seed yield (1011.0 kg ha–1). The highest oil content (43.97%) was also recorded in BARI Til-4 fertilized with 30 kg S ha–1, which was as good as that of BARI Til-4 fertilized with 40 kg S ha–1. Therefore, BARI Til-4 fertilized with 30 kg S ha–1 can be considered as a promising practice in respect of seed yield and oil content of sesame in Bangladesh. J. Bangladesh Agril. Univ. 17(1): 33–38, March 2019


1992 ◽  
Vol 72 (3) ◽  
pp. 635-641 ◽  
Author(s):  
A. E. Van Deynze ◽  
P. B. E. McVetty ◽  
R. Scarth ◽  
S. R. Rimmer

To compare the effects of varying seeding rate on the agronomic performance, phenology and seed quality of hybrid and conventional summer rape cultivars, four hybrid and two conventional summer rape cultivars were seeded at 1.5, 3.0, 4.5, 6.0 and 9.0 kg ha−1 at two locations for 3 yr. The hybrid cultivars were, very importantly, 24% higher yielding and produced 50% more total dry matter than the conventional cultivars. The hybrid cultivars were, on average, 1.3% lower in seed oil content, 1.0% higher in seed protein content and equal in sum of oil and protein in the seed compared with the conventional cultivars. The hybrid cultivars were on average, 1.3 d later to 50% flowering and 1.1 d later to maturity than the average for the conventional cultivars, (i.e., equal or earlier to flowering and maturity than Regent). The hybrid cultivars were also 3.9% lower in harvest index and 1.3 ppm lower in chlorophyll content than the conventional cultivars. In spite of these differences, there were no significant cultivar-by-seeding-rate interactions, indicating that the hybrid and conventional cultivars responded similarly to varying seeding rate. Lodging, days to 50% flowering, days to maturity, harvest index, survival, oil content and protein content displayed significant linear responses to varying seeding rate. Stand at maturity, seed yield and total dry matter production displayed significant linear and quadratic responses to varying seeding rate. Varying seeding rate had no effect on seed formation period, the sum of oil and protein content, or chlorophyll content. A seeding rate of 6 kg ha−1 maximized seed yield for both hybrid and conventional summer rape cultivars.Key words: Brassica napus, canola, seed quality, agronomy, phenology


2011 ◽  
Vol 40 (3) ◽  
pp. 482-488 ◽  
Author(s):  
Márcio Vieira da Cunha ◽  
Mario de Andrade Lira ◽  
Mércia Virginia Ferreira dos Santos ◽  
Erinaldo Viana de Freitas ◽  
José Carlos Batista Dubeux Junior ◽  
...  

The objectives in this work were to study the association between the morphological and productive characteristics in Pennisetum sp. clones, and to identify the morphological characteristics responsible for the productivity in Pennisetum cp. clones. The canonical correlations were evaluated and the path analysis was made from the simple genotypic correlation matrix between the morphological and productive characteristics of eight Pennisetum sp. clones (Taiwan A-146 2.37, Taiwan A-146 2.27, Taiwan-146 2.114, Merker México MX 6.31, Mott, HV-241, Elefante B and IRI-381). The canonical correlations were significant at 1% probability by the Chi-square test. The first pair of canonic factors, with correlation of 0.9999, related the plants with the highest dry matter content to plants with lower leaf area indexes, light perception and leaf angle. The second pair of canonic factors, with correlation of 0.9999, related the plants with the highest dry matter production to the plants with higher basal tiller density, height, and low green leaf number per tiller. The results of the path analysis indicated that the light interception is determinant in dry matter content expression of Pennisetum sp. clones, while the basal tiller density and plant height are responsible for dry matter production in these clones.


Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 201
Author(s):  
Marcal Gusmao ◽  
Delfim Da Costa ◽  
Angelo Da Costa Freitas ◽  
Kadambot H. M. Siddique ◽  
Robert Williams

Growth, development and yield of three-grain legumes (mung bean [F1], soybean [F2] and grass pea [F3]) following rice crop to enhance grain production was studied in a paddy field in the northern Timor-Leste. A split plot design was used with three water treatments (well-watered [W0], water withheld at flowering [W1] and after germination [W2]). Interaction between water treatments and species on dry matter production (p < 0.001) and seed yield (p = 0.005) was observed. In control, the highest seed yield was F1 (1.2 t/ha) followed by F2 (1.1 t/ha) and F3 (0.4 t/ha) respectively. There was a steady reduction in seed yield in F1 from W0 to W2, but almost fifty percent reduction in F2 under W1 and W2 compared to W0. F3 had little difference between water treatments. The W1 and W2 reduced number of filled pods per plant in all species compared to control (W0). Between the species, F3 had the highest filled pods per plant followed by F2 and F3. The W1 and W2 reduced seeds per pod of F1; however, it did not effect F2 and F3. There were interactions between water treatment and species on 100 seeds weight. The heaviest seeds were in F2 in the control plants, but in the F2 drought treatments (W1 and W2) seed weight were less than F3. The lowest seed weight was in F1, but there was no impact of the terminal droughts on its seed weight.


1984 ◽  
Vol 35 (4) ◽  
pp. 511 ◽  
Author(s):  
RW Downes ◽  
JS Gladstones

Plants of Lupinus angustifolius cv. Unicrop were raised at 27/22 or 21/16�C dayhight temperatures until flowering. They were then either grown on to maturity at these conditions or moved to the other regime. Branches were removed as they started to develop and leaves were removed at the start of flowering so that 0, 3, 6, 9, 12 upper leaves or all 21 leaves were retained. Conditions before flowering determined potential pod number. Defoliation treatments revealed that under favourably cool conditions all leaves contributed to seed yield but in treatments involving 27/22'C there was no seed yield response to more than about six leaves, emphasizing the significance of environmental conditions rather than current assimilate on pod set and other yield components. In another experiment, plants were raised to flowering at 27/22, 21/16 or 15/10�C before flowering, when all were moved to 21/16�C. Half the plants were allowed to develop branches and on the remainder branch buds were removed. Branch and stem growth appeared to provide severe competition for the development of the primary inflorescence. Though branching was much more pronounced in plants at 15/10�C before flowering than in other treatments, vegetative development exceeded reproductive investment and harvest index was low under these conditions. It was suggested that there appears to be a need to develop and evaluate unbranched or less-branched lupin genotypes.


2020 ◽  
Vol 22 (1) ◽  
pp. 47-56
Author(s):  
Faruque Ahmed ◽  
IM Ahmed ◽  
N Mokarroma ◽  
F Begum ◽  
A Jahan

A pot experiment was conducted with five selected rapeseed/mustard genotypes (BJDH-11, BJDH-12, BJDH-20, BARI Sarisha-14, and BARI Sarisha-16) under two sowing dates (November 20 and December 20) for evaluating their responses to sowing date induced high temperature stress during rabi season of 2017-18. Sowing dates induced temperature variability showed remarkable changes in pheonlogy, leaf area, leaf chlorophyll content, dry matter production and seed yield. Although December 20 sown crop received lower temperatures (minimum 9.8 to 13.2 and maximum 22.6 to 27oC) than November 20 sown crop (minimum 14.8 to 16.4 and maximum 21 to 27.2oC) at flowering but reverse was found at grain development stage. Grain development stage of November 20sown crop received lower temperatures (minimum 8.2 to 13.2 and maximum 24.1 to 27 oC) while December 20 sown crop received higher temperatures at grain development stage (minimum 8.2 to 18 and maximum 22.6 to 32.5oC).As a result December 20 sown crop matured earlier (6 to 9 days) than November 20 sown crop. Leaf area/plant was higher in December 20 sown crops compared to November 20 sown but total dry matter production was more or less same in both the sowing dates. Leaf chlorophyll content did not show any remarkable variation due to variation in sowing dates. However, antioxidant activity like Catalyse (CAT), Peroxidase (POD) Ascorbate peroxidase (APX) and Malondial dehyde (MDA) were found higher in December 20 sown crops than that of November 20sown. Higher activity of APX, POD and CAT with lower activity of MDA indicates comparatively high temperature tolerant genotype. Among the genotypes APX, POD and CAT activity were found higher with lower activity of MDA in BJDH-11 and BJDH-20 and these genotypes also gave higher yield than others. On the basis of growth parameters, antioxidant activity and seed yield of genotype BJDH-11 and BJDH-20 could be select as terminal high temperature tolerance genotypes. Bangladesh Agron. J. 2019, 22(1): 47-56


1991 ◽  
Vol 5 (1) ◽  
pp. 206-210 ◽  
Author(s):  
David R. Shaw ◽  
Marshall B. Wixson ◽  
Clyde A. Smith

Three experiments evaluated sicklepod interference with soybean with and without preplant incorporated applications of chlorimuron plus metribuzin or imazaquin. Sicklepod density, weed-free period, and weedy period were examined. In the absence of herbicides, soybean seed yield was reduced with 2 sicklepod plants row m-1, whereas 8 plants row m-1were necessary to reduce yield when herbicides were used. Herbicide use also increased soybean yield at higher sicklepod densities. Chlorimuron plus metribuzin reduced sicklepod dry matter at 8 plants row m-1. To maintain soybean yield, a weed-free period of 4 wk after emergence was required, regardless of treatment. Both herbicide treatments resulted in increased soybean yield at the zero and two wk weed-free periods; however, they did not affect soybean yield when the weed-free period was 4 wk or more. Imazaquin reduced sicklepod density when plots were left weedy full-season, and further reductions were noted with chlorimuron plus metribuzin. A sicklepod weedy interval of 8 wk reduced soybean yield when untreated, but either herbicide treatment extended that interval to 16 wk.


1989 ◽  
Vol 40 (4) ◽  
pp. 833
Author(s):  
JD McFarlane

Seven rates of copper were applied to the soil prior to the sowing of strawberry clover (Trifolium fragiferumL. cv. Palestine) on an alkaline peat deficient in copper. Symptoms of copper deficiency were evident only on the untreated plots where the clover did not set seed nor persist into the second year.Over five years� production, 1.0 kg Cu/ha continued to provide adequate copper, with regular dressings of superphosphate, for maximum dry matter production and seed yield. It was found that seed yield was more sensitive than vegetative dry matter yield to sub-optimal copper supply. At the lowest rate of applied copper (0.125 kg/ha), the vegetative yield ranged from 53% to 80% of the maximum harvest yield, whereas the seed yield ranged from 15% to 50% of maximum yield.For tissue sampled in the spring, the proposed critical range for copper concentration in the youngest open leaf (YOL) for vegetative dry matter production is 3-35 mg Cu/kg whereas that for seed production is 4.5-5.5 mg Cu/kg. At other times of the year the critical concentrations were higher. It was not clear if this was due to environmental conditions or changing internal requirements for copper.The critical copper concentration range in whole top (WT) tissue of 3.0-4.0 mg/kg for vegetative dry matter production could be applied to all samplings. For seed yield the critical range for copper concentration in WT was 4.0-5.0 mg/kg for the spring harvests. The critical copper concentration in seed for seed production was 5.0-6.0 mg/kg. In the pasture situation a critical concentration of 5.0-6.0 mg Cu/kg in the WT should be adopted when the animal requirement is considered.


2002 ◽  
Vol 42 (8) ◽  
pp. 1043 ◽  
Author(s):  
M. Seymour ◽  
K. H. M. Siddique ◽  
N. Brandon ◽  
L. Martin ◽  
E. Jackson

The response of Vicia sativa (cvv. Languedoc, Blanchefleur and Morava) and V. benghalensis (cv. Barloo) seed yield to seeding rate was examined in 9 field experiments across 2 years in south-western Australia. There were 2 types of field experiments: seeding rate (20, 40, 60, 100 and 140 kg/ha) × cultivar (Languedoc, Blanchefleur, and Morava or Barloo), and time of sowing (2 times of sowing of either Languedoc or Blanchefleur) × seeding rate (5,�7.5, 10, 15, 20, 30, 40, 50, 75 and 100 kg/ha).A target density of 40 plants/m2 gave 'optimum' seed yield of vetch in south-western Australia. In high yielding situations, with a yield potential above 1.5 t/ha, the 'optimum' plant density for the early flowering cultivar Languedoc (85–97 days to 50% flowering) was increased to 60 plants/m2. The later flowering cultivar Blanchefleur (95–106 days to 50% flowering) had an optimum plant density of 33 plants/m2 at all sites, regardless of fitted maximum seed yield. Plant density in the range 31–38 plants/m2 was found to be adequate for dry matter production at maturity of Languedoc and Blanchefleur. For the remaining cultivars Barloo and Morava we were unable to determine an average optimum density for either dry matter or seed yield due to insufficient and/or inconsistent data.


Sign in / Sign up

Export Citation Format

Share Document