scholarly journals A Transcriptome Analysis Reveals that Hepatic Glycolysis and Lipid Synthesis Are Negatively Associated with Feed Efficiency in DLY Pigs

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Cineng Xu ◽  
Xingwang Wang ◽  
Zhanwei Zhuang ◽  
Jie Wu ◽  
Shenping Zhou ◽  
...  

Abstract Feed efficiency (FE) is an important trait in the porcine industry. Therefore, understanding the molecular mechanisms of FE is vital for the improvement of this trait. In this study, 6 extreme high-FE and 6 low-FE pigs were selected from 225 Duroc × (Landrace × Yorkshire) (DLY) pigs for transcriptomic analysis. RNA-seq analysis was performed to determine differentially expressed genes (DEGs) in the liver tissues of the 12 individuals, and 507 DEGs were identified between high-FE pigs (HE- group) and low-FE pigs (LE- group). A gene ontology (GO) enrichment and pathway enrichment analysis were performed and revealed that glycolytic metabolism and lipid synthesis-related pathways were significantly enriched within DEGs; all of these DEGs were downregulated in the HE- group. Moreover, Weighted gene co-expression analysis (WGCNA) revealed that oxidative phosphorylation, thermogenesis, and energy metabolism-related pathways were negatively related to HE- group, which might result in lower energy consumption in higher efficiency pigs. These results implied that the higher FE in the HE- group may be attributed to a lower glycolytic, energy consumption and lipid synthesizing potential in the liver. Furthermore, our findings suggested that the inhibition of lipid synthesis and glucose metabolic activity in the liver may be strategies for improving the FE of DLY pigs.

2020 ◽  
Author(s):  
Basavaraj Vastrad ◽  
Chanabasayya Vastrad ◽  
Iranna Kotturshetti

AbstractSporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened. Pathway and GO enrichment analyses of DEGs were performed. Furthermore, the protein-protein interaction (PPI) network was predicted using the IntAct Molecular Interaction Database and visualized with Cytoscape software. In addition, hub genes and important modules were selected based on the network. Finally, we constructed target genes - miRNA regulatory network and target genes - TF regulatory network. Hub genes were validated. A total of 891 DEGs 448 of these DEGs presented significant up regulated, and the remaining 443 down regulated were obtained. Pathway enrichment analysis indicated that up regulated genes were mainly linked with glutamine degradation/glutamate biosynthesis, while the down regulated genes were involved in melatonin degradation. GO enrichment analyses indicated that up regulated genes were mainly linked with chemical synaptic transmission, while the down regulated genes were involved in regulation of immune system process. hub and target genes were selected from the PPI network, modules, and target genes - miRNA regulatory network and target genes - TF regulatory network namely YWHAZ, GABARAPL1, EZR, CEBPA, HSPB8, TUBB2A and CDK14. The current study sheds light on the molecular mechanisms of sCJD and may provide molecular targets and diagnostic biomarkers for sCJD.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Shaohua Zhang ◽  
Keke Zhang ◽  
Wenwen He ◽  
Yi Lu ◽  
Xiangjia Zhu

Purpose. To investigate and compare the lens phosphoproteomes in patients with highly myopic cataract (HMC) or age-related cataract (ARC). Methods. In this study, we undertook a comparative phosphoproteome analysis of the lenses from patients with HMC or ARC. Intact lenses from ARC and HMC patients were separated into the cortex and nucleus. After protein digestion, the phosphopeptides were quantitatively analyzed with TiO2 enrichment and liquid chromatography-mass spectrometry. The potential functions of different phosphopeptides were assessed by Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Results. In total, 522 phosphorylation sites in 164 phosphoproteins were identified. The number of phosphorylation sites was significantly higher in the cortex than in the nucleus, in both ARC and HMC lenses. The differentially phosphorylated peptides in the lens cortex and nucleus in HMC eyes were significantly involved in the glutathione metabolism pathway. The KEGG pathway enrichment analysis indicated that the differences in phosphosignaling mediators between the ARC and HMC lenses were associated with glycolysis and the level of phosphorylated phosphoglycerate kinase 1 was lower in HMC lenses than in ARC lenses. Conclusions. We provide an overview of the differential phosphoproteomes of HMC and ARC lenses that can be used to clarify the molecular mechanisms underlying their different phenotypes.


Author(s):  
Er-Hu Chen ◽  
Jin-Yan Duan ◽  
Wei Song ◽  
Dian-Xuan Wang ◽  
Pei-An Tang

Abstract The rusty grain beetle, Cryptolestes ferrugineus (Stephens), is a serious pest of stored grain, which has developed high levels of resistance to phosphine. In this study, five geographically distant populations of C. ferrugineus had been collected in China, specifically in granaries where phosphine fumigant is used for pest control, and they showed a high resistance ratio up to 1,907 (LC50 = 21.0 mg/liter). Then, a reference transcriptome was constructed to use as a basis for investigating the molecular mechanisms of phosphine resistance in this species, which consisted of 47,006 unigenes with a mean length of 1,090. Subsequently, the RNA-Seq analysis of individuals from the most susceptible and resistant populations led to the identification of 54 genes that are differentially expressed. GO and KEGG analysis demonstrated that genes associated with mitochondrial and respiration functions were significantly enriched. Also, the ‘structural constituent of cuticle’ term was annotated in the GO enrichment analysis and further qRT-PCR confirmed that the expression levels of nine cuticular protein genes were significantly increased in the resistant population. In conclusion, we present here a transcriptome-wide overview of gene expression changes between resistant and susceptible populations of C. ferrugineus, and this in turn documents that mitochondria and cuticular protein genes may play together a crucial role in phosphine resistance. Further gene function analysis should enable the provision of advice to expedite resistance management decisions.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yanji Zhang ◽  
Jia Li ◽  
Dan Wei ◽  
Guoyan Mo ◽  
Chaochao Yu ◽  
...  

Acupuncture has been widely used for obesity treatment, but its mechanism is still unclear. To investigate the molecular mechanisms, we applied electroacupuncture (EA) at the Zusanli (ST36) acupoint and treadmill exercise (TE) in a diet-induced obese (DIO) rat model and used RNA sequencing (RNA-seq) to identify molecular consequences. Forty Sprague-Dawley male rats were selected and randomly divided into five groups: control (C), DIO model (M), EA, TE, and EA + TE groups. According to the results, acupuncture reduced body weight and the ratio of retroperitoneal white adipose tissue (retro-WAT) to body weight. Total RNA was extracted from the retro-WAT from five groups for RNA-seq. Differentially expressed genes (DEG) analysis showed that there were obvious differences among the four comparisons of C vs. M, M vs. EA, M vs. TE, and M vs. EA + TE, followed by 1383, 913, 3324, and 2794 DE genes. Gene ontology (GO) term enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were performed to further classify the DEGs. Several GO terms were commonly significantly enriched in both M vs. TE and M vs. EA, such as myofibril and muscle contraction. In addition, some pathways were regulated by EA and TE, such as the peroxisome proliferator activated receptor signaling pathway and calcium signaling pathway. This study is the first to compare and analyze the differences in gene expression profiles in the retro-WAT of rats in different groups, which provide a clue for further investigation into the molecular mechanisms of obesity treatment by EA and TE.


Metabolites ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 275
Author(s):  
Priyanka Banerjee ◽  
Victor Adriano Okstoft Carmelo ◽  
Haja N. Kadarmideen

Feed efficiency (FE) is an economically important trait. Thus, reliable predictors would help to reduce the production cost and provide sustainability to the pig industry. We carried out metabolome-transcriptome integration analysis on 40 purebred Duroc and Landrace uncastrated male pigs to identify potential gene-metabolite interactions and explore the molecular mechanisms underlying FE. To this end, we applied untargeted metabolomics and RNA-seq approaches to the same animals. After data quality control, we used a linear model approach to integrate the data and find significant differently correlated gene-metabolite pairs separately for the breeds (Duroc and Landrace) and FE groups (low and high FE) followed by a pathway over-representation analysis. We identified 21 and 12 significant gene-metabolite pairs for each group. The valine-leucine-isoleucine biosynthesis/degradation and arginine-proline metabolism pathways were associated with unique metabolites. The unique genes obtained from significant metabolite-gene pairs were associated with sphingolipid catabolism, multicellular organismal process, cGMP, and purine metabolic processes. While some of the genes and metabolites identified were known for their association with FE, others are novel and provide new avenues for further research. Further validation of genes, metabolites, and gene-metabolite interactions in larger cohorts will elucidate the regulatory mechanisms and pathways underlying FE.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 387
Author(s):  
Zheyong Liang ◽  
Yongjian Zhang ◽  
Qiang Chen ◽  
Junjun Hao ◽  
Haichen Wang ◽  
...  

Acute aortic dissection is one of the most severe vascular diseases. The molecular mechanisms of aortic expansion and dissection are unclear. Clinical studies have found that statins play a protective role in aortic dissection development and therapy; however, the mechanism of statins’ effects on the aorta is unknown. The Gene Expression Omnibus (GEO) dataset GSE52093, GSE2450and GSE8686 were analyzed, and genes expressed differentially between aortic dissection samples and normal samples were determined using the Networkanalyst and iDEP tools. Weight gene correlation network analysis (WGCNA), functional annotation, pathway enrichment analysis, and the analysis of the regional variations of genomic features were then performed. We found that the minichromosome maintenance proteins (MCMs), a family of proteins targeted by statins, were upregulated in dissected aortic wall tissues and play a central role in cell-cycle and mitosis regulation in aortic dissection patients. Our results indicate a potential molecular target and mechanism for statins’ effects in patients with acute type A aortic dissection.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Ningyang Gao ◽  
Li Ding ◽  
Jian Pang ◽  
Yuxin Zheng ◽  
Yuelong Cao ◽  
...  

Purpose. This study is aimed at exploring the potential metabolite/gene biomarkers, as well as the differences between the molecular mechanisms, of osteoarthritis (OA) and rheumatoid arthritis (RA). Methods. Transcriptome dataset GSE100786 was downloaded to explore the differentially expressed genes (DEGs) between OA samples and RA samples. Meanwhile, metabolomic dataset MTBLS564 was downloaded and preprocessed to obtain metabolites. Then, the principal component analysis (PCA) and linear models were used to reveal DEG-metabolite relations. Finally, metabolic pathway enrichment analysis was performed to investigate the differences between the molecular mechanisms of OA and RA. Results. A total of 976 DEGs and 171 metabolites were explored between OA samples and RA samples. The PCA and linear module analysis investigated 186 DEG-metabolite interactions including Glycogenin 1- (GYG1-) asparagine_54, hedgehog acyltransferase- (HHAT-) glucose_70, and TNF receptor-associated factor 3- (TRAF3-) acetoacetate_35. Finally, the KEGG pathway analysis showed that these metabolites were mainly enriched in pathways like gap junction, phagosome, NF-kappa B, and IL-17 pathway. Conclusions. Genes such as HHAT, GYG1, and TRAF3, as well as metabolites including glucose, asparagine, and acetoacetate, might be implicated in the pathogenesis of OA and RA. Metabolites like ethanol and tyrosine might participate differentially in OA and RA progression via the gap junction pathway and phagosome pathway, respectively. TRAF3-acetoacetate interaction may be involved in regulating inflammation in OA and RA by the NF-kappa B and IL-17 pathway.


Author(s):  
Peiliang Wu ◽  
Xiaona Xie ◽  
Mayun Chen ◽  
Junwei Sun ◽  
Luqiong Cai ◽  
...  

Background and Objective: Qishen Yiqi formula (QSYQ) is used to treat cardiovascular disease in the clinical practice of traditional Chinese medicine. However, few studies have explored whether QSYQ affects pulmonary arterial hypertension (PAH), and the mechanisms of action and molecular targets of QSYQ for the treatment of PAH are unclear. A bioinformatics/network topology-based strategy was used to identify the bioactive ingredients, putative targets, and molecular mechanisms of QSYQ in PAH. Methods: A network pharmacology-based strategy was employed by integrating active component gathering, target prediction, PAH gene collection, network topology, and gene enrichment analysis to systematically explore the multicomponent synergistic mechanisms. Results: In total, 107 bioactive ingredients of QSYQ and 228 ingredient targets were identified. Moreover, 234 PAH-related differentially expressed genes with a |fold change| >2 and an adjusted P value < 0.005 were identified between the PAH patient and control groups, and 266 therapeutic targets were identified. The pathway enrichment analysis indicated that 85 pathways, including the PI3K-Akt, MAPK, and HIF-1 signaling pathways, were significantly enriched. TP53 was the core target gene, and 7 other top genes (MAPK1, RELA, NFKB1, CDKN1A, AKT1, MYC, and MDM2) were the key genes in the gene-pathway network based on the effects of QSYQ on PAH. Conclusion: An integrative investigation based on network pharmacology may elucidate the multicomponent synergistic mechanisms of QSYQ in PAH and lay a foundation for further animal experiments, human clinical trials and rational clinical applications of QSYQ.


Hereditas ◽  
2021 ◽  
Vol 158 (1) ◽  
Author(s):  
Yun Tang ◽  
Xiaobo Yang ◽  
Huaqing Shu ◽  
Yuan Yu ◽  
Shangwen Pan ◽  
...  

Abstract Background Sepsis and septic shock are life-threatening diseases with high mortality rate in intensive care unit (ICU). Acute kidney injury (AKI) is a common complication of sepsis, and its occurrence is a poor prognostic sign to septic patients. We analyzed co-differentially expressed genes (co-DEGs) to explore relationships between septic shock and AKI and reveal potential biomarkers and therapeutic targets of septic-shock-associated AKI (SSAKI). Methods Two gene expression datasets (GSE30718 and GSE57065) were downloaded from the Gene Expression Omnibus (GEO). The GSE57065 dataset included 28 septic shock patients and 25 healthy volunteers and blood samples were collected within 0.5, 24 and 48 h after shock. Specimens of GSE30718 were collected from 26 patients with AKI and 11 control patents. AKI-DEGs and septic-shock-DEGs were identified using the two datasets. Subsequently, Gene Ontology (GO) functional analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and protein-protein interaction (PPI) network analysis were performed to elucidate molecular mechanisms of DEGs. We also evaluated co-DEGs and corresponding predicted miRNAs involved in septic shock and AKI. Results We identified 62 DEGs in AKI specimens and 888, 870, and 717 DEGs in septic shock blood samples within 0.5, 24 and 48 h, respectively. The hub genes of EGF and OLFM4 may be involved in AKI and QPCT, CKAP4, PRKCQ, PLAC8, PRC1, BCL9L, ATP11B, KLHL2, LDLRAP1, NDUFAF1, IFIT2, CSF1R, HGF, NRN1, GZMB, and STAT4 may be associated with septic shock. Besides, co-DEGs of VMP1, SLPI, PTX3, TIMP1, OLFM4, LCN2, and S100A9 coupled with corresponding predicted miRNAs, especially miR-29b-3p, miR-152-3p, and miR-223-3p may be regarded as promising targets for the diagnosis and treatment of SSAKI in the future. Conclusions Septic shock and AKI are related and VMP1, SLPI, PTX3, TIMP1, OLFM4, LCN2, and S100A9 genes are significantly associated with novel biomarkers involved in the occurrence and development of SSAKI.


2020 ◽  
Author(s):  
Liancheng Zhu ◽  
Mingzi Tan ◽  
Haoya Xu ◽  
Bei Lin

Abstract Background.Human Epididymis Protein 4 (HE4) is a novel serum biomarker for diagnosis of epithelial ovarian cancer (EOC) with high specificity and sensitivity compared with CA125, and the increasing researches have been carried out on its roles in promoting carcinogenesis and chemoresistance in EOC in recent years, however, its underlying molecular mechanisms remain poorly understood. The aim of this study was to elucidate the molecular mechanisms of HE4 stimulation and to identify the key genes and pathways mediating carcinogenesis in EOC using microarray and bioinformatics analysis.Methods. We established a stable HE4-silence ES-2 ovarian cancer cell line labeled as “S”, and its active HE4 protein stimulated cells labeled as “S4”. Human whole genome microarray analysis was used to identify deferentially expressed genes (DEGs) from triplicate samples of S4 and S cells. “clusterProfiler” package in R, DAVID, Metascape, and Gene Set Enrichment Analysis (GSEA) were used to perform gene ontology (GO) and pathway enrichment analysis, and cBioPortal for WFDC2 coexpression analysis. GEO dataset (GSE51088) and quantitative real-time polymerase chain reaction (qRT-PCR) was applied for validation. The protein–protein interaction (PPI) network and modular analyses were performed using Metascape and Cytoscape. Results.In total, 713 DEGs were found (164 up regulated and 549 down regulated) and further analyzed by GO, pathway enrichment and PPI analyses. We found that MAPK pathway accounted for a significant portion of the enriched terms. WFDC2 coexpression analysis revealed ten WFDC2 coexpressed genes (TMEM220A, SEC23A, FRMD6, PMP22, APBB2, DNAJB4, ERLIN1, ZEB1, RAB6B, and PLEKHF1) that were also dramatically changed in S4 cells and validated by dataset GSE51088. Kaplan–Meier survival statistics revealed clinical significance for all of the 10 target genes. Finally, PPI was constructed, sixteen hub genes and eight molecular complex detections (MCODEs) were identified, the seeds of five most significant MCODEs were subjected to GO and KEGG enrichment analysis and their clinical significance was evaluated.Conclusions.By applying microarray and bioinformatics analyses, we identified DEGs and determined a comprehensive gene network of active HE4 stimulation in EOC cells. We offered several possible mechanisms and identified therapeutic and prognostic targets of HE4 in EOC.


Sign in / Sign up

Export Citation Format

Share Document