scholarly journals The HIF1α/JMY pathway promotes glioblastoma stem-like cell invasiveness after irradiation

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Laurent R. Gauthier ◽  
Mahasen Saati ◽  
Hayet Bensalah-Pigeon ◽  
Karim Ben M’Barek ◽  
Oscar Gitton-Quent ◽  
...  

Abstract Human glioblastoma (GBM) is the most common primary malignant brain tumor. A minor subpopulation of cancer cells, known as glioma stem-like cells (GSCs), are thought to play a major role in tumor relapse due to their stem cell-like properties, their high resistance to conventional treatments and their high invasion capacity. We show that ionizing radiation specifically enhances the motility and invasiveness of human GSCs through the stabilization and nuclear accumulation of the hypoxia-inducible factor 1α (HIF1α), which in turn transcriptionally activates the Junction-mediating and regulatory protein (JMY). Finally, JMY accumulates in the cytoplasm where it stimulates GSC migration via its actin nucleation-promoting activity. Targeting JMY could thus open the way to the development of new therapeutic strategies to improve the efficacy of radiotherapy and prevent glioma recurrence.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xuan Wang ◽  
Jun Cai ◽  
Lei Zhao ◽  
Dejun Zhang ◽  
Guojie Xu ◽  
...  

AbstractExperimental and clinical studies over the past two decades have provided overwhelming evidence that human cancers, including prostate cancer (PCa), harbor cancer stem cells (CSCs) that sustain tumor growth, drive tumor progression and mediate therapy resistance and tumor relapse. Recent studies have also implicated NUMB as a PCa suppressor and an inhibitor of PCa stem cells (PCSCs); however, exactly how NUMB functions in these contexts remains unclear. Here, by employing bioinformatics analysis and luciferase assays and by conducting rescue experiments, we first show that NUMB is directly targeted by microRNA-9-5p (miR-9-5p), an oncogenic miR associated with poor prognosis in many malignancies. We further show that miR-9-5p levels are inversely correlated with NUMB expression in CD44+ PCSCs. miR-9-5p reduced NUMB expression and inhibited numerous PCSC properties including proliferation, migration, invasion as well as self-renewal. Strikingly, overexpression of NUMB in CD44+ PCSCs overcame all of the above PCSC properties enforced by miR-9-5p. Taken together, our results suggest that inhibiting the expression of the oncomiR miR-9-5p and overexpressing NUMB may represent novel therapeutic strategies to target PCSCs and PCa metastasis.


2020 ◽  
Vol 245 (13) ◽  
pp. 1073-1086
Author(s):  
Sukanya Roy ◽  
Subhashree Kumaravel ◽  
Ankith Sharma ◽  
Camille L Duran ◽  
Kayla J Bayless ◽  
...  

Hypoxia or low oxygen concentration in tumor microenvironment has widespread effects ranging from altered angiogenesis and lymphangiogenesis, tumor metabolism, growth, and therapeutic resistance in different cancer types. A large number of these effects are mediated by the transcription factor hypoxia inducible factor 1⍺ (HIF-1⍺) which is activated by hypoxia. HIF1⍺ induces glycolytic genes and reduces mitochondrial respiration rate in hypoxic tumoral regions through modulation of various cells in tumor microenvironment like cancer-associated fibroblasts. Immune evasion driven by HIF-1⍺ further contributes to enhanced survival of cancer cells. By altering drug target expression, metabolic regulation, and oxygen consumption, hypoxia leads to enhanced growth and survival of cancer cells. Tumor cells in hypoxic conditions thus attain aggressive phenotypes and become resistant to chemo- and radio- therapies resulting in higher mortality. While a number of new therapeutic strategies have succeeded in targeting hypoxia, a significant improvement of these needs a more detailed understanding of the various effects and molecular mechanisms regulated by hypoxia and its effects on modulation of the tumor vasculature. This review focuses on the chief hypoxia-driven molecular mechanisms and their impact on therapeutic resistance in tumors that drive an aggressive phenotype. Impact statement Hypoxia contributes to tumor aggressiveness and promotes growth of many solid tumors that are often resistant to conventional therapies. In order to achieve successful therapeutic strategies targeting different cancer types, it is necessary to understand the molecular mechanisms and signaling pathways that are induced by hypoxia. Aberrant tumor vasculature and alterations in cellular metabolism and drug resistance due to hypoxia further confound this problem. This review focuses on the implications of hypoxia in an inflammatory TME and its impact on the signaling and metabolic pathways regulating growth and progression of cancer, along with changes in lymphangiogenic and angiogenic mechanisms. Finally, the overarching role of hypoxia in mediating therapeutic resistance in cancers is discussed.


2021 ◽  
Vol 28 ◽  
Author(s):  
Yuxuan Cai ◽  
Bei Wang ◽  
Wen Xu ◽  
Kai Liu ◽  
Yisong Gao ◽  
...  

Background: Endometrial cancer is the fourth most common malignancy in the female population worldwide. It was estimated that 65,620 new cases and 12,590 subsequent deaths occurred in 2020 in the United States. Patients with type II and advanced endometrial cancer do not respond well to the current treatments. Therefore, endometrial cancer should be better understood in order to develop more effective treatments. Objective: To provide an overview of genetic, metabolic characteristics, therapeutic strategies and current application of nanotechnology surrounding endometrial cancer. Method: Relevant articles were retrieved from Pubmed and were systematically reviewed. Results: Hypoxia-inducible factor-1 and Von Hippel-Lindau factor participated in oncogenesis and progression of endometrial cancer, and Nrf2 was associated with oncogenesis. Various genetic alterations were found in endometrial cancer. The examination of the abnormal X chromosome inactivation may help with the diagnosis of endometrial cancer and its precancerous lesions. Some absent tumor suppressor genes, activated oncogenes were revealed by the genetically modified mouse models. Disorders in glucose and lipid metabolism were found in endometrial cancer. Current therapeutic strategies focused on the HIF-1α pathway, the mTOR pathway as well as immunotherapy. Nanotechnology showed great potential in endometrial cancer’s early diagnosis, metastasis determination and treatment. Conclusion: Endometrial cancer has been understood in various aspects, but the underlying mechanisms still remain relatively unknown, which might be the source of novel diagnostic, prognostic and therapeutic targets. Nanomedicine in endometrial cancer is poorly studied, but the current researches showed great results in treating endometrial cancer. It needs further researching.


Endocrinology ◽  
2009 ◽  
Vol 150 (5) ◽  
pp. 2413-2418 ◽  
Author(s):  
Mikihiro Yoshie ◽  
Eri Miyajima ◽  
Satoru Kyo ◽  
Kazuhiro Tamura

Local hypoxia that occurs during menstruation triggers angiogenesis that is crucial for cyclical remodeling of the endometrium during the menstrual cycle. Hypoxia is thought to be important for the expression of vascular endothelial growth factor (VEGF) via its transcriptional factor, hypoxia inducible factor (HIF)-1α, in the endometrium. The activation of the phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway may modulate HIF-1α protein levels. Stathmin, a microtubule regulatory protein, was expressed in the stroma, glandular epithelium, and vascular endothelium in human endometrium. In this study, we examined a possible role of stathmin in hypoxia-induced HIF-1α and VEGF expression in primary isolated and immortalized human endometrial stromal cells, glandular epithelial cells, and human umbilical venous endothelial cells (HUVEC). Knocking down stathmin expression using small interfering RNA caused microtubule stabilization and inhibited hypoxia-induced VEGF mRNA expression via the reduction of HIF-1α protein levels in endometrial cells and HUVEC. Treatment of the cells with a PI3K inhibitor, wortmannin, inhibited the expression of VEGF mRNA and the accumulation of HIF-1α protein. Silencing of stathmin expression repressed the activation (phosphorylation) of Akt in endometrial cells and HUVEC. These results suggest that endometrial stathmin is linked to HIF-1α protein accumulation and VEGF expression through the PI3K/Akt signaling pathway and may be involved in regeneration of the endometrium during the menstrual cycle in human uterine cells.


2021 ◽  
Vol 118 (40) ◽  
pp. e2109186118
Author(s):  
Jin-Seon Yook ◽  
Mikyoung You ◽  
Jiyoung Kim ◽  
Ashley M. Toney ◽  
Rong Fan ◽  
...  

Iron is an essential biometal, but is toxic if it exists in excess. Therefore, iron content is tightly regulated at cellular and systemic levels to meet metabolic demands but to avoid toxicity. We have recently reported that adaptive thermogenesis, a critical metabolic pathway to maintain whole-body energy homeostasis, is an iron-demanding process for rapid biogenesis of mitochondria. However, little information is available on iron mobilization from storage sites to thermogenic fat. This study aimed to determine the iron-regulatory network that underlies beige adipogenesis. We hypothesized that thermogenic stimulus initiates the signaling interplay between adipocyte iron demands and systemic iron liberation, resulting in iron redistribution into beige fat. To test this hypothesis, we induced reversible activation of beige adipogenesis in C57BL/6 mice by administering a β3-adrenoreceptor agonist CL 316,243 (CL). Our results revealed that CL stimulation induced the iron-regulatory protein–mediated iron import into adipocytes, suppressed hepcidin transcription, and mobilized iron from the spleen. Mechanistically, CL stimulation induced an acute activation of hypoxia-inducible factor 2-α (HIF2-α), erythropoietin production, and splenic erythroid maturation, leading to hepcidin suppression. Disruption of systemic iron homeostasis by pharmacological HIF2-α inhibitor PT2385 or exogenous administration of hepcidin-25 significantly impaired beige fat development. Our findings suggest that securing iron availability via coordinated interplay between renal hypoxia and hepcidin down-regulation is a fundamental mechanism to activate adaptive thermogenesis. It also provides an insight into the effects of adaptive thermogenesis on systemic iron mobilization and redistribution.


1999 ◽  
Vol 112 (8) ◽  
pp. 1203-1212 ◽  
Author(s):  
D. Chilov ◽  
G. Camenisch ◽  
I. Kvietikova ◽  
U. Ziegler ◽  
M. Gassmann ◽  
...  

Hypoxia-inducible factor-1 (HIF-1) is a master regulator of mammalian oxygen homeostasis. HIF-1 consists of two subunits, HIF-1alpha and the aryl hydrocarbon receptor nuclear translocator (ARNT). Whereas hypoxia prevents proteasomal degradation of HIF-1alpha, ARNT expression is thought to be oxygen-independent. We and others previously showed that ARNT is indispensable for HIF-1 DNA-binding and transactivation function. Here, we have used ARNT-mutant mouse hepatoma and embryonic stem cells to examine the requirement of ARNT for accumulation and nuclear translocation of HIF-1alpha in hypoxia. As shown by immunofluorescence, HIF-1alpha accumulation in the nucleus of hypoxic cells was independent of the presence of ARNT, suggesting that nuclear translocation is intrinsic to HIF-1alpha. Co-immunoprecipitation of HIF-1alpha together with ARNT could be performed in nuclear extracts but not in cytosolic fractions, implying that formation of the HIF-1 complex occurs in the nucleus. A proteasome inhibitor and a thiol-reducing agent could mimic hypoxia by inducing HIF-1alpha in the nucleus, indicating that escape from proteolytic degradation is sufficient for accumulation and nuclear translocation of HIF-1alpha. During biochemical separation, both HIF-1alpha and ARNT tend to leak from the nuclei in the absence of either subunit, suggesting that heterodimerization is required for stable association within the nuclear compartment. Nuclear stabilization of the heterodimer might also explain the hypoxically increased total cellular ARNT levels observed in some of the cell lines examined.


2015 ◽  
Vol 30 (suppl_3) ◽  
pp. iii199-iii199
Author(s):  
Dorien Groenendaal−van de Meent ◽  
Martin den Adel ◽  
Jan Noukens ◽  
Sanne Rijnders ◽  
Axel Krebs-Brown ◽  
...  

2016 ◽  
Vol 310 (2) ◽  
pp. C142-C150 ◽  
Author(s):  
Hirobumi Asai ◽  
Junya Hirata ◽  
Ayumi Hirano ◽  
Kazuya Hirai ◽  
Sayaka Seki ◽  
...  

Indoxyl sulfate (IS) is a representative uremic toxin that accumulates in the blood of patients with chronic kidney disease (CKD). In addition to the involvement in the progression of CKD, a recent report indicates that IS suppresses hypoxia-inducible factor (HIF)-dependent erythropoietin (EPO) production, suggesting that IS may also contribute to the progression of renal anemia. In this report, we provide evidence that aryl hydrocarbon receptor (AhR) mediates IS-induced suppression of HIF activation and subsequent EPO production. In HepG2 cells, IS at concentrations similar to the blood levels in CKD patients suppressed hypoxia- or cobalt chloride-induced EPO mRNA expression and transcriptional activation of HIF. IS also induced AhR activation, and AhR blockade resulted in abolishment of IS-induced suppression of HIF activation. The HIF transcription factor is a heterodimeric complex composed of HIF-α subunits (HIF-1α and HIF-2α) and AhR nuclear translocator (ARNT). IS suppressed nuclear accumulation of the HIF-α-ARNT complex accompanied by an increase of the AhR-ARNT complex in the nucleus, implying the involvement of interactions among AhR, HIF-α, and ARNT in the suppression mechanism. In rats, oral administration of indole, a metabolic precursor of IS, inhibited bleeding-induced elevation of renal EPO mRNA expression and plasma EPO concentration and strongly induced AhR activation in the liver and renal cortex tissues. Collectively, this study is the first to elucidate the detailed mechanism by which AhR plays an indispensable role in the suppression of HIF activation by IS. Hence, IS-induced activation of AhR may be a potential therapeutic target for treating renal anemia.


Sign in / Sign up

Export Citation Format

Share Document