scholarly journals Interplay between eutrophication and climate warming on bacterial communities in coastal sediments differs depending on water depth and oxygen history

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Laura Seidel ◽  
Elias Broman ◽  
Stephanie Turner ◽  
Magnus Ståhle ◽  
Mark Dopson

AbstractCoastal aquatic systems suffer from nutrient enrichment, which results in accelerated eutrophication effects due to increased microbial metabolic rates. Climate change related prolonged warming will likely accelerate existing eutrophication effects, including low oxygen concentrations. However, how the interplay between these environmental changes will alter coastal ecosystems is poorly understood. In this study, we compared 16S rRNA gene amplicon based bacterial communities in coastal sediments of a Baltic Sea basin in November 2013 and 2017 at three sites along a water depth gradient with varying bottom water oxygen histories. The shallow site showed changes of only 1.1% in relative abundance of bacterial populations in 2017 compared to 2013, while the deep oxygen-deficient site showed up to 11% changes in relative abundance including an increase of sulfate-reducing bacteria along with a 36% increase in organic matter content. The data suggested that bacterial communities in shallow sediments were more resilient to seasonal oxygen decline, while bacterial communities in sediments subjected to long-term hypoxia seemed to be sensitive to oxygen changes and were likely to be under hypoxic/anoxic conditions in the future. Our data demonstrate that future climate changes will likely fuel eutrophication related spread of low oxygen zones.

2017 ◽  
Vol 63 (8) ◽  
pp. 649-660 ◽  
Author(s):  
Riaz Ullah ◽  
Muhammad Yasir ◽  
Imran Khan ◽  
Fehmida Bibi ◽  
Sayed Sartaj Sohrab ◽  
...  

Mangrove habitats are ecologically important ecosystems that are under severe pressure worldwide because of environmental changes and human activities. In this study, 16S rRNA gene amplicon deep-sequencing was used to compare bacterial communities in Red Sea mangrove ecosystems at anthropogenically influenced coastal sites with those at a relatively pristine island site. In total, 32 phyla were identified from the mangrove rhizospheres, with Proteobacteria predominating at each of the studied sites; however, the relative abundance was significantly decreased at the coastal sites (Mastorah, MG-MS; Ar-Rayis, MG-AR) compared with the pristine island site near Dhahban (MG-DBI). The phyla Actinobacteria, Firmicutes, Acidobacteria, Chloroflexi, Spirochetes, and Planctomycetes were present at a relative abundance of >1% at the MG-MS and MG-AR sites, but their concentration was <1% at the MG-DBI site. A total of 1659 operational taxonomic units (OTUs) were identified at the species level, and approximately 945 OTUs were shared across the different sampling sites. Multivariate principal coordinate data analysis separated the MG-DBI site from the MG-AR and MG-MS cluster. Specific bacterial taxa were enriched at each location, and in particular, the genera Pseudoalteromonas and Cobetia were predominantly identified in the MG-DBI site compared with the anthropogenically influenced coastal sites.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 501 ◽  
Author(s):  
Poorna Vidanage ◽  
Seok-Oh Ko ◽  
Seungdae Oh

The Baltic Sea represents one of the largest brackish ecosystems where various environmental factors control dynamic seasonal shifts in the structure, diversity, and function of the planktonic microbial communities. In this study, despite seasonal fluctuations, several bacterial populations (<2% of the total OTUs) that are highly dominant (25% of relative abundance) and highly frequently occurring (>85% of occurrence) over four seasons were identified. Mathematical models using occurrence frequency and relative abundance data were able to describe community assembly persisting over time. Further, this work uncovered one of the core bacterial populations phylogenetically affiliated to SAR11 subclade IIIa. The analysis of the hypervariable region of 16S rRNA gene and single copy housekeeping genes recovered from metagenomic datasets suggested that the population was unexpectedly evolutionarily closely related to those inhabiting a mesosaline lacustrine ecosystem rather than other marine/coastal members. Our metagenomic results further revealed that the newly-identified population was the major driver facilitating the seasonal shifts in the overall community structure over the brackish waters of the Baltic Sea. The core community uncovered in this study supports the presence of a brackish water microbiome distinguishable from other marine and freshwater counterparts and will be a useful sentinel for monitoring local/global environmental changes posed on brackish surface waters.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1658
Author(s):  
Jan C. Plaizier ◽  
Anne-Mette Danscher ◽  
Paula A. Azevedo ◽  
Hooman Derakhshani ◽  
Pia H. Andersen ◽  
...  

The effects of a subacute ruminal acidosis (SARA) challenge on the composition of epimural and mucosa-associated bacterial communities throughout the digestive tract were determined in eight non-lactating Holstein cows. Treatments included feeding a control diet containing 19.6% dry matter (DM) starch and a SARA-challenge diet containing 33.3% DM starch for two days after a 4-day grain step-up. Subsequently, epithelial samples from the rumen and mucosa samples from the duodenum, proximal, middle and distal jejunum, ileum, cecum and colon were collected. Extracted DNA from these samples were analyzed using MiSeq Illumina sequencing of the V4 region of the 16S rRNA gene. Distinct clustering patterns for each diet existed for all sites. The SARA challenge decreased microbial diversity at all sites, with the exception of the middle jejunum. The SARA challenge also affected the relative abundances of several major phyla and genera at all sites but the magnitude of these effects differed among sites. In the rumen and colon, the largest effects were an increase in the relative abundance of Firmicutes and a reduction of Bacteroidetes. In the small intestine, the largest effect was an increase in the relative abundance of Actinobacteria. The grain-based SARA challenge conducted in this study did not only affect the composition and cause dysbiosis of epimural microbiota in the rumen, it also affected the mucosa-associated microbiota in the intestines. To assess the extent of this dysbiosis, its effects on the functionality of these microbiota must be determined in future.


2019 ◽  
Vol 96 (1) ◽  
Author(s):  
Stefanie P Glaeser ◽  
Iulian Gabur ◽  
Hossein Haghighi ◽  
Jens-Ole Bartz ◽  
Peter Kämpfer ◽  
...  

ABSTRACT Associations of endophytic bacterial community composition of oilseed rape (Brassica napus L.) with quantitative resistance against the soil-borne fungal pathogen Verticillium longisporum was assessed by 16S rRNA gene amplicon sequencing in roots and hypocotyls of four plant lines with contrasting genetic composition in regard to quantitative resistance reactions. The plant compartment was found to be the dominating driving factor for the specificity of bacterial communities in healthy plants. Furthermore, V. longisporum infection triggered a stabilization of phylogenetic group abundance in replicated samples suggesting a host genotype-specific selection. Genotype-specific associations with bacterial phylogenetic group abundance were identified by comparison of plant genotype groups (resistant versus susceptible) and treatment groups (healthy versus V. longisporum-infected) allowing dissection into constitutive and induced directional association patterns. Relative abundance of Flavobacteria, Pseudomonas, Rhizobium and Cellvibrio was associated with resistance/susceptibility. Relative abundance of Flavobacteria and Cellvibrio was increased in resistant genotypes according to their known ecological functions. In contrast, a higher relative abundance of Pseudomonas and Rhizobium, which are known to harbor many species with antagonistic properties to fungal pathogens, was found to be associated with susceptibility, indicating that these groups do not play a major role in genetically controlled resistance of oilseed rape against V. longisporum.


Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 879
Author(s):  
Stefan G. Buzoianu ◽  
Ava M. Firth ◽  
CallaBria Putrino ◽  
Fabio Vannucci

A healthy microbial community in the gut of piglets is critical to minimize the negative performance consequences associated with dietary and environmental changes that occur at weaning. Tonisity Px, an isotonic protein drink, is a potential alternative to balance the gut microbiota as it contains key ingredients for nourishing the small intestine. In the present study, 16 litters comprising 161 piglets were randomly allocated to a group to which Tonisity Px was provided from days 2 to 8 of age (TPX group) or to a control group, to which no Tonisity Px was provided. The TPX group also received Tonisity Px in the 3 days before and after weaning. At days 9, 17, and 30 of age, fecal and ileum samples were collected from piglets belonging to both groups and analyzed using 16S rRNA gene sequencing, semiquantitative PCR of Rotavirus serogroups, and semiquantitative Escherichia coli culture. Overall, Tonisity Px increased the abundance of beneficial bacterial populations (Lactobacillus and Bacteroides species) and reduced potentially pathogenic bacterial populations (E. coli and Prevotellaceae), in both the pre-weaning and post-weaning periods.


Author(s):  
Haomiao Cheng ◽  
Ling Cheng ◽  
Liang Wang ◽  
Tengyi Zhu ◽  
Wei Cai ◽  
...  

The effects of hydrodynamic disturbances on the bacterial communities in eutrophic aquatic environments remain poorly understood, despite their importance to ecological evaluation and remediation. This study investigated the evolution of bacterial communities in the water–sediment systems under the influence of three typical velocity conditions with the timescale of 5 weeks. The results demonstrated that higher bacterial diversity and notable differences were detected in sediment compared to water using the 16S rRNA gene sequencing. The phyla Firmicutes and γ-Proteobacteria survived better in both water and sediment under stronger water disturbances. Their relative abundance peaked at 36.0%, 33.2% in water and 38.0%, 43.6% in sediment, respectively, while the phylum Actinobacteria in water had the opposite tendency. Its relative abundance grew rapidly in static control (SC) and peaked at 44.8%, and it almost disappeared in disturbance conditions. These phenomena were caused by the proliferation of genus Exiguobacterium (belonging to Firmicutes), Citrobacter, Acinetobacter, Pseudomonas (belonging to γ-Proteobacteria), and hgcI_clade (belonging to Actinobacteria). The nonmetric multidimensional scaling (NMDS) and Venn analysis also revealed significantly different evolutionary trend in the three water-sediment systems. It was most likely caused by the changes of geochemical characteristics (dissolved oxygen (DO) and nutrients). This kind of study can provide helpful information for ecological assessment and remediation strategy in eutrophic aquatic environments.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Randall R. Jiménez ◽  
Gilbert Alvarado ◽  
José Sandoval ◽  
Simone Sommer

Abstract Background The skin microbiome serves as a first line defense against pathogens in vertebrates. In amphibians, it has the potential to protect against the chytrid fungus Batrachochytrium dendrobatis (Bd), a likely agent of amphibian declines. Alteration of the microbiome associated with unfavorable environmental changes produced by anthropogenic activities may make the host more susceptible to pathogens. Some amphibian species that were thought to be “extinct” have been rediscovered years after population declines in the late 1980s probably due to evolved Bd-resistance and are now threatened by anthropogenic land-use changes. Understanding the effects of habitat disturbance on the host skin microbiome is relevant for understanding the health of these species, along with its susceptibility to pathogens such as Bd. Here, we investigate the influence of habitat alteration on the skin bacterial communities as well as specifically the putative Bd-inhibitory bacterial communities of the montane frog Lithobates vibicarius. This species, after years of not being observed, was rediscovered in small populations inhabiting undisturbed and disturbed landscapes, and with continuous presence of Bd. Results We found that cutaneous bacterial communities of tadpoles and adults differed between undisturbed and disturbed habitats. The adults from disturbed habitats exhibited greater community dispersion than those from undisturbed habitats. We observed a higher richness of putative Bd-inhibitory bacterial strains in adults from disturbed habitats than in those from undisturbed habitats, as well as a greater number of these potential protective bacteria with a high relative abundance. Conclusions Our findings support the microbial “Anna Karenina principle”, in which disturbance is hypothesized to cause greater microbial dispersion in communities, a so-called dysbiosis, which is a response of animal microbiomes to stress factors that decrease the ability of the host or its microbiome to regulate community composition. On the positive side, the high richness and relative abundance of putative Bd-inhibitory bacteria may indicate the development of a defense mechanism that enhances Bd-protection, attributed to a co-occurrence of more than 30-years of host and pathogen in these disturbed habitats. Our results provide important insight into the influence of human-modified landscapes on the skin microbiome and health implications of Bd-survivor species.


2020 ◽  
Author(s):  
Liang Wei

&lt;p&gt;The biogeochemical interfaces are hotspots for organic matter (OM) transformation. However, direct and continuouxiacis tracing of OM transformations and N and P degradation processes are lacking due to the heterogeneous and opaque nature of soil microenvironment. To investigate these processes, a new soil microarray technology (SoilChips) was developed and used. Homogeneous 2-mm-diameter SoilChips were constructed by depositing a dispersed paddy soils with high and low soil organic carbon (SOC) content. A horizon suspension on a patterned glass. Dissolved organic matter from the original soil was added on the SoilChips to mimic biogeochemical processes on interfaces. The chemical composition of biogeochemical interfaces were evaluated via X-ray photoelectron spectroscopy (XPS) and the two-dimensional distribution of enzyme activities in SoilChips were evaluated by zymography. Over 30 days, soil with high SOC content increases microbial nutrition (N and P) requirements than soil with low SOC evidenced by higher hotspots of &amp;#946;-1,4-N-acetaminophen glucosidase, and acid phosphomonoesterases and higher 16S rRNA gene copies. The degree of humification in dissolved organic matter (DOM) was higher and the bioavailability of DOM was poorer in soil with high SOC than soil with low SOC. The poorest bioavailability of DOM was detected at the end of incubation in soil with high SOC. Molecular modeling of OM composition showed that low SOC mainly facilitated the microbial production of glucans but high SOC mainly facilitated the microbial production of proteins. We demonstrated that SOC content or DOM availability for microorganisms modifies the specific OM molecular processing and N and P degradation processes, thereby providing a direct insight into biogeochemical transformation of OM at micro-scale.&lt;/p&gt;


Author(s):  
Aitana Ares ◽  
Joana Pereira ◽  
Eva Garcia ◽  
Joana Costa ◽  
Igor Tiago

The pandemic Pseudomonas syringae pv. actinidiae (Psa) has been compromising the production of the kiwifruit industry in major producing countries. Abiotic factors and plant gender are known to influence the disease outcome. To better understand their impact, we have determined the diversity of the leafs bacterial communities using the V5-V6 region of the 16S rRNA gene amplicon on the Illumina MiSeq sequencing platform. Healthy and diseased female and male kiwifruit plants were analyzed in two consecutive seasons: spring and autumn. This work describes whether the season, plant gender and the presence of Psa can affect the leaves bacterial community. Fifty bacterial operational taxonomic units (OTUs) were identified and assigned to five phyla distributed by 14 different families and 23 genera. The leaves of healthy female and male kiwi plants share most of the identified bacterial populations, that undergoes major seasonal changes. In both cases a substantial increase of the relative abundance of genus Methylobacterium is observed in autumn. The presence of Psa induced profound changes on leaves bacterial communities structure translated into a reduction in the relative abundance of previously dominant genera that had been found in healthy plants, namely Hymenobacter, Sphingomonas and Massilia. The impact of Psa was less pronounced in the bacterial community structure of male plants in both seasons. Some of the naturally occurring genera have the potential to act as an antagonist or as enhancers of the defense mechanisms paving the way for environmentally friendly and sustainable disease control.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Abiodun D. Ogunniyi ◽  
Catherine E. Dandie ◽  
Sergio Ferro ◽  
Barbara Hall ◽  
Barbara Drigo ◽  
...  

AbstractThere is increasing demand for safe and effective sanitizers for irrigation water disinfection to prevent transmission of foodborne pathogens to fresh produce. Here we compared the efficacy of pH-neutral electrolyzed oxidizing water (EOW), sodium hypochlorite (NaClO) and chlorine dioxide (ClO2) against single and mixed populations of E. coli, Listeria and Salmonella under a range of pH and organic matter content. EOW treatment of the mixed bacterial suspension resulted in a dose-dependent (<1 mg/L free chlorine), rapid (<2 min) and effective (4–6 Log10) reduction of the microbial load in water devoid of organic matter under the range of pH conditions tested (pH, 6.0, 7.0, 8.4 and 9.2). The efficacy of EOW containing 5 mg/L free chlorine was unaffected by increasing organic matter, and compared favourably with equivalent concentrations of NaClO and ClO2. EOW at 20 mg/L free chlorine was more effective than NaClO and ClO2 in reducing bacterial populations in the presence of high (20–100 mg/L) dissolved organic carbon, and no regrowth or metabolic activity was observed for EOW-treated bacteria at this concentration upon reculturing in rich media. Thus, EOW is as effective or more effective than other common chlorine-based sanitizers for pathogen reduction in contaminated water. EOW’s other characteristics, such as neutral pH and ease of handling, indicate its suitability for fresh produce sanitation.


Sign in / Sign up

Export Citation Format

Share Document