scholarly journals Experimental study on thermal effect and gas release laws of coal-polyurethane cooperative spontaneous combustion

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haiyan Wang ◽  
Yao Tian ◽  
Jinglei Li ◽  
Xiao Chen

AbstractThis paper presents a research on the kinetics and gas release laws of the cooperative spontaneous combustion of coal-polyurethane binary system by means of thermogravimetric analysis and spontaneous combustion simulation experiments. The coal-polyurethane binary system is more prone than individual samples to combustion. The polyurethane mass fraction has a great influence on the cooperative spontaneous combustion process. As the polyurethane mass fraction rises, the activation energies of oxygen absorption stage and pyrolysis stage decrease. The combustion residues of coal-polyurethane binary system scorches into lumps and the surfaces of the particles become rougher. During spontaneous combustion, the initial release temperatures of the four gases CO2, CO, C2H6 and C2H4 drop as the polyurethane mass fraction increases. The gas release amount of them increases with increasing polyurethane mass fraction. And the amount of CH4 decreases as the polyurethane mass fraction increases. The CO/CO2 ratio with temperature for different polyurethane mass fraction have the same trends. The results of this study have implications concerning polyurethane materials application and fire protection in coal mine.

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Naifu Cao ◽  
Gang Wang ◽  
Yuntao Liang

In this article, a series of experiments have been carried out to study the spontaneous combustion and oxidation mechanism of coal after water immersion and investigate its tendency to spontaneous combustion, analyze the difficulty of spontaneous combustion of coal samples under different water immersion conditions, and establish a kinetic model of water immersion coal oxidation (taking the Bulianta 12# coal as a case study). They rely on physical oxidation adsorption, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetry, and oil bath heating. SEM has been used to analyze the characteristics of coal pore structure under different water immersion conditions (water-saturated coal samples under different water loss conditions until the coal samples are completely dried); FTIR served to investigate the characteristics of the molecular chemical structure of the coal surface before and after the coal is immersed in water. Through programmed temperature oxidation experiments combined with FTIR analyses and gas chromatographic (GC) analysis of gaseous products, it has been possible to study the changes of molecular structure and gas products on the surface of coal samples at different temperatures and water immersion conditions. The oxidation reaction rate of the 12# coal samples of Shendong Mine’s Bulianta Mine under different water content conditions during the spontaneous combustion process has been quantitatively studied. The difficulty of spontaneous combustion of coal samples has been correspondingly addressed. A kinetic model from the perspective of oxygen consumption has been proposed. Thermogravimetry-differential scanning calorimetry (TG-DSC) has been used to analyze and study the exothermal oxidation process before and after coal immersion. From the perspective of the exothermic intensity of the coal-oxygen reaction, an oxidation kinetic model for immersed coal samples has been developed to qualitatively determine its spontaneous combustion tendency. Results have shown that the increase in the specific surface area increases the risk of spontaneous combustion, and coal samples after soaking and drying have a stronger tendency to spontaneous combustion than raw coal. The moisture content of the coal sample leading to the easiest ignition conditions is 16.05%. Regardless of the moisture content, the critical temperature is maintained at 65–75°C, and the temperature of the left coal in the goaf should be prevented from exceeding this critical value.


2021 ◽  
pp. 014459872110490
Author(s):  
Fei Gao ◽  
Zhe Jia ◽  
Mei-ling Qin ◽  
Xiao-gang Mu ◽  
Yi-fei Teng ◽  
...  

Research on the spontaneous combustion of coal caused by sulfur has always been focused on pyrite in coal but has rarely considered the influence of organic sulfur. In this paper, coal samples, rather than model compounds, were used to study the influence of organic sulfur content in coal on its spontaneous combustion process. The results of X-ray photoelectron spectroscopy and thermogravimetry, differential scanning calorimetry, and mass spectrometry indicate that organic sulfur in Shuiyu clean coal exists in forms of mercaptan, thioether, sulfone (sulfoxide), and thiophene. With the decrease of organic sulfur content, the characteristic temperature points and the peak values of the exothermic curves in the process of coal oxidation spontaneous combustion all shifted toward higher temperatures. The ignition activation energy of coal also increased, and the initial and peak gas evolution temperatures of the oxidation products shifted toward higher temperatures. These findings suggest that the reduction of organic sulfur content can inhibit the oxidation process and spontaneous combustion tendency of coal. This effectively reveals the mechanism of the spontaneous combustion of coal and is of great significance to future studies in this field.


2020 ◽  
Author(s):  
Caiping Wang ◽  
Xiadan Duan ◽  
Zujin Bai ◽  
Yang Xiao ◽  
Jun Deng

Abstract Pyrite and water in coal have considerable influence on coal spontaneous combustion and threaten the safety of mine production gravely. To reveal the influence mechanism of water and associated pyrite on oxidation kinetics of coal–oxygen composite reaction, the pyrite of 0%, 1%, 2%, 4%, 6% and the moisture of 1%, 5%, 10%, 15% and 20% were mixed with the coal samples to obtain 25 coal samples. Thermogravimetric analysis technology was conducted to explore the changes of mass and characteristic temperatures of coal samples treated with water and associated pyrite during the low–temperature oxidation, and kinetic analysis of the oxidation process was discussed based on multiple heating rates(5 °C/min, 10 °C/min and15 °C/min).The results show that water and associated pyrite had a great influence on coal in oxygen absorption and weight gain stage ( T 3 ~ T 5 ), and there was a proportion range with the largest synergistic oxidation contribution. The apparent activation energy of the coal sample appeared changes, but the mechanism model did not, indicating that water and pyrite could affect the oxidation process of the coal sample externally. When water and associated pyrite exhibit synergistic interaction, there have a range that water was 10~15% and associate pyrite was 2~4% had the largest promotion and contribution to anthracite oxidation. The results have important scientific value and practical guiding significance for the further study on prediction, prevention and control of high sulfur anthracite spontaneous combustion.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1969 ◽  
Author(s):  
Yuguo Wu ◽  
Yulong Zhang ◽  
Jie Wang ◽  
Xiaoyu Zhang ◽  
Junfeng Wang ◽  
...  

It is imperative to have an in-depth understanding of the effect of extraneous moisture on the spontaneous combustion of coal not only for the control and prevention of coal spontaneous combustion in the coal mining industry, but also for the optimization design and application of the technological process. In this study, the type of moisture in a coal body has been redefined for the first time from the perspective of disaster prevention and control, i.e., original occurrence of moisture in the coal matrix and the extraneous moisture from the technological process. A suit of coal bodies with different extraneous moisture was prepared by soaking long-flame coal with a low water content. Using a temperature-programmed oxidation test, the effects of extraneous moisture on the temperature increase rate of coal bodies and the emission characteristics of gaseous products during coal spontaneous combustion were studied. Moreover, combined with the characterization of thermal analysis and of pore structure test, the action the mechanism of extraneous moisture on the coal spontaneous combustion process was also explored. The experimental results indicated that the effect of the extraneous moisture content varied with the development of coal spontaneous combustion. In the slow oxidation stage, extraneous moisture played a physical inhibition role in the coal oxidation. In the accelerated oxidation stage, extraneous moisture exhibited a catalytic effect on the coal–oxygen reaction or directly participated in the reaction. After entering the rapid oxidation stage, a delayed effect appeared. When the coal temperature exceeded 180 °C, the spontaneous combustion characteristics of coals with different initial moisture contents gradually tended to achieved balance.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Youxin Zhao ◽  
Qingjie Qi ◽  
Xinlei Jia ◽  
Yingjie Liu ◽  
Jingwen Zhang

The suction negative pressure is an important factor affecting the spontaneous combustion of coal around a borehole. Because the mechanism of suction negative pressure in the gas extraction process remains unclear, a constant suction negative pressure is often used in coal mines, leading to a low efficiency of gas extraction in deep coal seams. Moreover, the coal body easily undergoes spontaneous combustion during the extraction process, which is not conducive to safe mining. To study the effect of the suction negative pressure near the end sealing section, a numerical model of the combustion process around a borehole under the influence of suction negative pressure was established using COMSOL. The variation laws of the gas seepage velocity, oxygen concentration, and coal temperature in the borehole cycle were analyzed, and the gas suction negative pressure under different sealing parameters was optimized to ensure efficient gas extraction and prevent the spontaneous combustion of coal. The results showed that the negative pressure of extraction provides the power required for gas seepage into the borehole, and the gas flow rate increases with increasing negative pressure of extraction, exhibiting a linear growth trend. The range of the coal suffocation zone around the sealing section decreases with the increase in the negative pressure. With the extension of the gas extraction time, the oxygen concentration decreases rapidly, and the inflection point advances with the increase in the negative pressure. When the negative pressure of gas extraction is <40 kPa, the range of the high-temperature area around the block increases with the negative pressure of gas extraction. Based on the present situation of the spontaneous combustion induced by gas drainage in the Pingdingshan No. 10 Coal Mine, different sealing parameters should be set with different negative pressures of extraction, and the negative pressure of extraction should not exceed −18 kPa when the sealing depth is 20 m and the sealing length is 8 m in the 24130 working face. These parameter settings can help effectively prevent spontaneous combustion during the extraction process.


2021 ◽  
Vol 45 (4) ◽  
pp. 317-327
Author(s):  
Yongfei Jin ◽  
Li Yan ◽  
Yin Liu ◽  
Chuansheng Li

In order to solve the shortcomings of the traditional mining anti-extinguishing gel material such as low strength and poor water retention, a high hydrocolloid anti-extinguishing material was developed with sodium alginate and light calcium carbonate as the base material and gluconolactone as the retarder, which was mixed and reacted. The base material ratio of highly efficient water-retaining colloidal material for coal void filling was determined as 2% SA + 0.5% PCC + 1% GDL with a moulding time of 4.5 min, while the base material ratio of highly efficient water-retaining colloidal material for extinguishing high temperature fires was 2.5% SA + 1% PCC + 1% GDL with a moulding time of 2.5 min. The highly efficient water-retaining colloidal material was found to reduce the concentration of signature gas and delay the characteristic temperature point and increase the activation energy of coal oxidation, which indicates that the highly efficient water-retaining colloidal material can effectively inhibit the spontaneous combustion process of coal at low temperature stage. Infrared spectroscopy experiments were conducted to investigate the microscopic resistance mechanism of the highly efficient water-retaining colloidal material, and the results showed that the highly efficient water-retaining colloidal material mainly reduce the activity of Ar-C-O-, -COO-, -CH3, -CH2 and -OH in coal to inhibit the spontaneous combustion of coal.


2021 ◽  
Vol 246 ◽  
pp. 617-622
Author(s):  
Vladimir Rodionov ◽  
Sergei Tursenev ◽  
Igor Skripnik ◽  
Yurii Ksenofontov

The article is devoted to the study of the problem of spontaneous combustion of energy grades of coal not only during storage, but also during transportation. As the main samples for the study, the energy grades of SS and Zh coals were selected. The main task of the scientific research was to study the rate of cooling and heating of coal depending on their thermophysical parameters and environmental parameters. To solve this problem, the authors used both the author's installations designed to study the thermophysical parameters of the spontaneous combustion process (the Ya.S.Kiselev method), and the NETZSCH STA 449 F3 Jupiter synchronous thermal analysis device, the NETZSCH Proteus Termal Analysis software package. On the basis of a complex study of the spontaneous combustion process, the authors of the article obtained the kinetic characteristics of the spontaneous heating process (activation energy and pre-exponential multiplier). Nomograms of the permissible size of coal density of different types and shapes of accumulation depending on the ambient temperature are presented, practical recommendations for the prevention (avoidance) of spontaneous combustion of coal fuel are given.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 662
Author(s):  
Joanna Jójka ◽  
Rafał Ślefarski

This paper details the experimental and numerical analysis of a combustion process for atmospheric swirl burners using methane with added ammonia as fuel. The research was carried out for lean methane–air mixtures, which were doped with ammonia up to 5% and preheated up to 473 K. A flow with internal recirculation was induced by burners with different outflow angles from swirling blades, 30° and 50°, where tested equivalence ratio was 0.71. The NO and CO distribution profiles on specified axial positions of the combustor and the overall emission levels at the combustor outlet were measured and compared to a modelled outcome. The highest values of the NO emissions were collected for 5% NH3 and 50° (1950 ppmv), while a reduction to 1585 ppmv was observed at 30°. The doubling of the firing rates from 15 kW up to 30 kW did not have any great influence on the overall emissions. The emission trend lines were not proportional to the raising share of the ammonia in the fuel. 3D numerical tests and a kinetic study with a reactor network showed that the NO outlet concentration for swirl flame depended on the recirculation ratio, residence time, wall temperature, and the mechanism used. Those parameters need to be carefully defined in order to get highly accurate NO predictions—both for 3D simulations and simplified reactor-based models.


Sign in / Sign up

Export Citation Format

Share Document