scholarly journals Root NRT, NiR, AMT, GS, GOGAT and GDH expression levels reveal NO and ABA mediated drought tolerance in Brassica juncea L.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seema Sahay ◽  
Luis Robledo-Arratia ◽  
Katarzyna Glowacka ◽  
Meetu Gupta

AbstractLittle is known about the interactive effects of exogenous nitric oxide (NO) and abscisic acid (ABA) on nitrogen (N) metabolism and related changes at molecular and biochemical levels under drought stress. The present study highlights the independent and combined effect of NO and ABA (grouped as “nitrate agonists”) on expression profiles of representative key genes known to be involved in N-uptake and assimilation, together with proline metabolism, N–NO metabolism enzyme’s activity and nutrient content in polyethylene glycol (PEG) treated roots of Indian mustard (B. juncea cv. Varuna). Here we report that PEG mediated drought stress negatively inhibited growth performance, as manifested by reduced biomass (fresh and dry weight) production. Total N content and other nitrogenous compounds (NO3−, NO2−) were decreased; however, NH4+, NH4+/ NO3− ratio and total free amino acids content were increased. These results were positively correlated with the PEG induced changes in expression of genes and enzymes involved in N-uptake and assimilation. Also, PEG supply lowered the content of macro- and micro-nutrients but proline level and the activity of ∆1-pyrroline-5-carboxylate synthetase increased indicating increased oxidative stress. However, all these responses were reversed upon the exogenous application of nitrate agonists (PEG + NO, PEG + NO + ABA, and PEG + ABA) where NO containing nitrate agonist treatment i.e. PEG + NO was significantly more effective than PEG + ABA in alleviating drought stress. Further, increases in activities of L-arginine dependent NOS-like enzyme and S-nitrosoglutathione reductase were observed under nitrate agonist treatments. This indicates that the balanced endogenous change in NO and ABA levels together during synthesis and degradation of NO mitigated the oxidative stress in Indian mustard seedlings. Overall, our results reveal that NO independently or together with ABA may contribute to improved crop growth and productivity under drought stress.

2011 ◽  
Vol 6 (No. 1) ◽  
pp. 21-29 ◽  
Author(s):  
H. Khaled ◽  
H.A. Fawy

In this study, the effects were investigated of salinity, foliar and soil applications of humic substances on the growth and mineral nutrients uptake of Corn (Hagein, Fardy10), and the comparison was carried out of the soil and foliar applications of humic acid treatments at different NaCl levels. Soil organic contents are one of the most important parts that they directly affect the soil fertility and textures with their complex and heterogenous structures although they occupy a minor percentage of the soil weight. Humic acids are an important soil component that can improve nutrient availability and impact on other important chemical, biological, and physical properties of soils. The effects of foliar and soil applications of humic substances on the plant growth and some nutrient elements uptake of Corn (Hagein, Fardy10) grown at various salt concentrations were examined. Sodium chloride was added to the soil to obtain 20 and 60mM saline conditions. Solid humus was applied to the soil one month before planting and liquid humic acids were sprayed on the leaves twice on 20<sup>th</sup> and 40<sup>th</sup> day after seedling emergence. The application doses of solid humus were 0, 2 and 4 g/kg and those of liquid humic acids were 0, 0.1 and 0.2%. Salinity negatively affected the growth of corn; it also decreased the dry weight and the uptake of nutrient elements except for Na and Mn. Soil application of humus increased the N uptake of corn while foliar application of humic acids increased the uptake of P, K, Mg,Na,Cu and Zn. Although the effect of interaction between salt and soil humus application was found statistically significant, the interaction effect between salt and foliar humic acids treatment was not found significant. Under salt stress, the first doses of both soil and foliar application of humic substances increased the uptake of nutrients.


1979 ◽  
Vol 9 (2) ◽  
pp. 224-230 ◽  
Author(s):  
P. E. Pope

Dry weights and nutrient contents of all aboveground biomass components were estimated for four seed sources of 11-year-old loblolly pine (Pinustaeda L.) grown in plantations of the same spacing on an old-field site of high quality in the hilly region of north-central Arkansas, U.S.A. Soil nutrient content was estimated to a depth of 0.61 m. Stand data averaged over all seeds sources are in agreement with published reports for dry weight and nutrient accumulation for loblolly pine if differences associated with seasonal variation are considered. Seed source significantly affected total dry matter and nutrient accumulations. Estimated total aboveground mean annual accumulation of biomass for the four seed sources ranged from 5.99 × 103 to 11.17 × 103 kg/ha per year. Elemental accumulation (kilograms per hectare per year) ranged from 14.06 to 23.66 for N, 1.54 to 3.45 for P, and 6.96 to 18.43 for K. On the average, trees comprise 84% of the aboveground plant biomass and contain 76% of the N, 77% of the P, and 90%, of the K associated with plant tissue. The significant influence of seed source on these stand values can affect the potential impact of short rotation, total tree harvesting on long-term site productivity. The elemental content of the tree biomass ranged from 7 to 11% of the total N, 20 to 35% of the P, and 14 to 30% of the K in the soil–litter–plant system.


HortScience ◽  
2005 ◽  
Vol 40 (3) ◽  
pp. 665-669 ◽  
Author(s):  
David R. Sandrock ◽  
Timothy L. Righetti ◽  
Anita N. Azarenko

Cornus sericea L., Weigela florida (Bunge) A. DC., and Euonymus alatus (Thunb.) Sieb were grown outside in 3.8-L plastic containers for 345 days (1 Apr. 2001 to 11 Mar. 2002). Nitrogen (N) was applied at rates (NAR) of 25, 50, 100, 200, and 300 mg·L–1 and delivered as aqueous double-labeled 15N depleted NH4NO3 (min 99.95% atom 14N). In all species, root, shoot, and total plant dry weight increased with increasing NARs while root to shoot ratios decreased. Similarly, root, shoot, and total plant N increased with NAR for each species, and at each NAR more N was stored in the roots than in the shoots. Estimation of fertilizer N uptake determined by the total N method was higher for all species and at each NAR than estimation of N uptake determined by the fertilizer 15N tracer method. Fertilizer N uptake efficiency determined by the total N method was highest at 25 mg·L–1 and decreased as NARs increased. In contrast fertilizer N uptake efficiency determined by the fertilizer 15N tracer method was lowest at 25 mg·L–1 and increased or remained relatively constant as NARs increased. Differences in N uptake and N uptake efficiency can be attributed to overestimation by the total N method due to the inclusion of nonfertilizer N and underestimation by the fertilizer 15N tracer method due to pool substitution. Corrected N uptake efficiency values can be calculated by adjusting the original data (total N or 15N uptake) by the distance between the origin and the y intercept of the regression line representing the data.


2007 ◽  
Vol 62 (5-6) ◽  
pp. 410-416 ◽  
Author(s):  
Ying Yang ◽  
Feng He ◽  
Longjiang Yu ◽  
Xuehong Chen ◽  
Jing Lei ◽  
...  

The effect of water deficit on flavonoid production and physiological parameters characteristic for oxidative stress were studied in a cell suspension culture of Glycyrrhiza inflata Batal to investigate its drought tolerance. The result indicated that appropriate water deficit enhanced biomass accumulation of 27.1 g L-1 and flavonoid production of 151.5 mg L-1, which was about 2-fold and 1.5-fold of the control, respectively. But it decreased the water content. Drought stress led to hydrogen peroxide accumulation more than in the control. Moreover, under drought conditions, malondialdehyde content, the activities of catalase and peroxidase increased to a greater extent than the control, and each reached a maximum value of 91.3 μmol g-1 dry weight, 85.6 U and 1951 U g-1 dry weight per min, which was 1.5-, 1.7- and 3.7-fold of the control, respectively. All above showed that appropriate water deficit could activate the antioxidative defense enzymes system to maintain stability in plants subjected to drought stress. On the contrary, the activity of phenylalanine ammonia lyase of the control increased in company with the biosynthesis of flavonoids, which indicated that phenylalanine ammonia lyase might play an important role in the path of the biosynthesis of flavonoids.


2021 ◽  
Vol 8 (2) ◽  
pp. 451-460
Author(s):  
Geraldine Abel ◽  
Retno Suntari ◽  
Ania Citraresmini

The maize crop is an important commodity other than rice in Indonesia. Maize production reached 30 million tons in 2018. Efforts that can be made to increase maize production on Ultisols in Indonesia is by the application of biochar rice husk and compost. Biochar that has a high affinity for nutrients does not experience decay in the soil for decades, while compost can improve soil chemical properties by increasing nutrient content. The purpose of this study was to analyze the effect of the application of a combination of rice husk biochar and compost on soil chemical properties, N uptake, and growth of maize on an Ultisol. This study was conducted with six treatments. The results showed that the application of a combination of rice husk biochar and compost had an effect on increasing the C-organic and N-total in soil, but it did not affect the C/N of the incubated soil. Application of a combination of 8 t rice husk biochar ha-1 and 30 compost ha-1 significantly improved plant height, dry weight, and N uptake of maize plants.


2004 ◽  
Vol 129 (3) ◽  
pp. 439-448 ◽  
Author(s):  
Hannah G. Rempel ◽  
Bernadine C. Strik ◽  
Timothy L. Righetti

The effects of 15N-labeled fertilizer applied to mature summer-bearing red raspberry (Rubus idaeus L. `Meeker') plants were measured over 2 years. Four nitrogen (N) treatments were applied: singularly at 0, 40, or 80 kg·ha-1 of N in early spring (budbreak), or split with 40 kg·ha-1 of N (unlabeled) applied at budbreak and 40 kg·ha-1 of N (15N-depleted) applied eight weeks later. Plants were sampled six times per year to determine N and 15N content in the plant components throughout the growing season. Soil also was sampled seven times per year to determine inorganic N concentrations within the four treatments as well as in a bare soil plot. There was a tendency for the unfertilized treatment to have the lowest and for the split-N treatment to have the highest yield in both years. N application had no significant effect on plant dry weight or total N content in either year. Dry weight accumulation was 5.5 t·ha-1 and total N accumulation was 88 to 96 kg·ha-1 for aboveground biomass in the fertilized plots in 2001. Of the total N present, averaged over 2 years, 17% was removed in prunings, 12% was lost through primocane leaf senescence, 13% was removed through fruit harvest, 30% remained in the over-wintering plant, and 28% was considered lost or transported to the roots. Peak fertilizer N-uptake occurred by July for the single N applications and by September for the last application in the split-N treatment. This uptake accounted for 36% to 37% (single applications) and 24% (last half of split application) of the 15N applied. Plants receiving the highest single rate of fertilizer took up more fertilizer N while plants receiving the lower rate took up more N from the soil and from storage tissues. By midharvest, fertilizer N was found primarily in the fruit, fruiting laterals, and primocanes (94%) for all fertilized treatments; however, the majority of the fertilizer N applied in the last half of the split application was located in the primocanes (60%). Stored fertilizer N distribution was similar in all fertilized treatments. By the end of the second year, 5% to 12% of the fertilizer acquired in 2001 remained in the fertilized plants. Soil nitrate concentrations increased after fertilization to 78.5 g·m-3, and declined to an average of 35.6 g·m-3 by fruit harvest. Seasonal soil N decline was partially attributed to plant uptake; however, leaching and immobilization into the organic fraction may also have contributed to the decline.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 672f-673
Author(s):  
L.P. Brandenberger ◽  
R.P. Wiedenfeld ◽  
D. Makus

Fertilization programs used commercially for bell peppers (Capsicum annuum) in the subtropical Lower Rio Grande Valley of Texas may vary substantially from recommendations based on research. Therefore, a commercial fertilization program used on a significant fraction of the pepper production in this area was evaluated at two locations. Preplant soil tests showed NO3-N levels were low at one location and very high at the other. Nitrogen application where preplant soil NO3-N was low resulted in a six-fold yield increase (from 197 to 1203 kg·ha–1), and improvements in fruit weight, fruit volume, fruit density, wall thickness, wall strength, and carotenoid and chlorophyll a and b contents. No other nutrient application at either location or N application at the site where preplant soil NO3-N levels were high significantly affected yield by size class, fruit quality characteristics, storage properties, or mineral and organic components. Nitrogen application had the greatest effect on dry-weight accumulation and N uptake during fruit set and maturation when N demand was high. Where N responses were observed, N application increased total dry weight in plant and fruit by 150% and total N uptake by 186%, yet this increase amounted to a N fertilizer uptake efficiency of only 12%. Thus, N should be used judiciously to prevent pollution of drainage and ground waters.


Author(s):  
Onkar Singh ◽  
Satendra Kumar ◽  
Ashish Dwivedi ◽  
B. P. Dhyani ◽  
R. K. Naresh

At the present time, incessant cereal-cereal cropping along with haphazard use of nutrients including micronutrients is posing menace to agricultural sustainability and environmental safety. Thus, the present investigation was conducted during kharif season 2013 on sandy loam soil of S.V.P.U.A & T Meerut (Uttar Pradesh) to evaluate sulphur and iron fertilization on performance and production potential vis-à-vis nutrient removal by using F test. The data on active growth and yield with their contributing trait were calculated on net plot area basis (18 m<sup>2</sup>). Moreover nutrient content in plant, qualities and available soil nutrient status were recorded as per the standard procedure. The experimental results revealed that plant height, number of branch per plant and dry weight at 30 and 60 DAS, number of nodules per plant, number of pods per plant, qualities and nutrient contents were affected significantly by different sulphur and Iron levels. Application of RDF along with sulphur 40 kg ha<sup>-1</sup> and Fe 2.5 kg ha<sup>-1</sup> gave the maximum grain yield (10.83 q ha<sup>-1</sup>) which increased by 83.56% over control, besides it also improved all growth attributes at 30 and 60 DAS and number of pods per plant. Furthermore, grain yield was positively related with number of branches, number of nodules at 60 DAS (42.46) and number of pods (45.90). The maximum total uptake of P, K, S and Fe by urdbean was recorded as 5.34 kg ha<sup>-1</sup>, 30.21 kg ha<sup>-1</sup>, 5.22 kg ha<sup>-1</sup>, 871.57 g ha<sup>-1</sup> respectively by using RDF + Sulphur 40 + Fe 5.0 kg ha<sup>-1</sup>, whereas maximum total N uptake (60.03 kg ha<sup>-1</sup>) was noticed under RDF + Sulphur 40 + Fe 2.5 kg ha<sup>-1</sup>. It is a legume crop so it is tremendously eco-friendly and useful for sustainable agriculture and soil health.


Author(s):  
Yonghua Wang ◽  
Yuxuan Liu ◽  
Su Liu ◽  
Bing Wu

The toxicity of arsenic (As) could be influenced by many environmental factors and elements. Iron (Fe) is one of the elements that could be involved in As-induced toxicity. In this study, the interactive effects of Fe and As in HepG2 cells were analyzed based on cytotoxicity and transcriptomic analyses. The results showed that Fe could decrease cell viability and increase mitochondrial depolarization induced by As exposure. Oxidative stress and damage have been proven to be one of the main mechanisms of As toxicity. Our results showed that Fe increased the generation of reactive oxygen species (ROS) and lipid peroxidation product malondialdehyde (MDA) induced by As exposure. Microarray analysis further verified that Fe increased the alteration of gene expression and biological processes related to oxidative stress, cell proliferation, and the apoptotic signaling pathway caused by As exposure. Both results of cytotoxicity and transcriptomic analyses suggest that an increase of Fe in the human body could increase the As-induced toxicity, which should be considered during the health risk assessment of As.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1146
Author(s):  
Katarzyna Przygocka-Cyna ◽  
Przemysław Barłóg ◽  
Witold Grzebisz ◽  
Tomasz Spiżewski

The in-season trend of onion biomass and its yield depend on the dynamics of nitrogen (N) and sulfur (S) uptake. This hypothesis was verified based on a three-year (2009, 2010, 2011) field study (Poznan University of Life Sciences). The experimental factors consisted of N: 0, 60, 120 and S: 0, 30, 60 kg ha−1. The dynamics of onion total dry weight (TDW), total N uptake (TNU), and total S uptake (TSU) were determined at 10-day intervals. The in-season course of TDW and TNU was best described by the expolinear and TSU by the quadratic growth model. Sulfur uptake increased in onion at day after emergence (DAE) 40, independent of its rate with respect to SN control, resulting in increased N by 50%, and consequently higher yield. The maximum absolute S uptake rate (SCm), a factor defining yield, increased progressively with the N rate, but only in the absence of S application. Plants fertilized simultaneously with S and N showed a more complicated impact on SCm. The N rate of 120 kg ha−1 resulted in SCm reduction, leading to a yield drop. The expolinear model indicated an onion growth disturbance, revealed under unfavorable growth conditions, leading to yield depression.


Sign in / Sign up

Export Citation Format

Share Document