scholarly journals Electricity-producing Staphylococcus epidermidis counteracts Cutibacterium acnes

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shinta Marito ◽  
Sunita Keshari ◽  
Supitchaya Traisaeng ◽  
Do Thi Tra My ◽  
Arun Balasubramaniam ◽  
...  

AbstractStaphylococcus epidermidis (S. epidermidis) ATCC 12228 was incubated with 2% polyethylene glycol (PEG)-8 Laurate to yield electricity which was measured by a voltage difference between electrodes. Production of electron was validated by a Ferrozine assay. The anti-Cutibacterium acnes (C. acnes) activity of electrogenic S. epidermidis was assessed in vitro and in vivo. The voltage change (~ 4.4 mV) reached a peak 60 min after pipetting S. epidermidis plus 2% PEG-8 Laurate onto anodes. The electricity produced by S. epidermidis caused significant growth attenuation and cell lysis of C. acnes. Intradermal injection of C. acnes and S. epidermidis plus PEG-8 Laurate into the mouse ear considerably suppressed the growth of C. acnes. This suppressive effect was noticeably reversed when cyclophilin A of S. epidermidis was inhibited, indicating the essential role of cyclophilin A in electricity production of S. epidermidis against C. acnes. In summary, we demonstrate for the first time that skin S. epidermidis, in the presence of PEG-8 Laurate, can mediate cyclophilin A to elicit an electrical current that has anti-C. acnes effects. Electricity generated by S. epidermidis may confer immediate innate immunity in acne lesions to rein in the overgrowth of C. acnes at the onset of acne vulgaris.

2021 ◽  
Author(s):  
Shinta Marito ◽  
Sunita Keshari ◽  
Supitchaya Traisaeng ◽  
Do Thi Tra My ◽  
Arun Balasubramaniam ◽  
...  

Abstract Staphylococcus epidermidis (S. epidermidis) ATCC 12228 was incubated with 2% polyethylene glycol (PEG)-8 Laurate to yield electricity which was measured by a voltage difference between electrodes. Production of electron was validated by a Ferrozine assay. The anti-Cutibacterium acnes (C. acnes) activity of electrogenic S. epidermidis was assessed in vitro and in vivo. The voltage change (~ 4.4 mV) reached a peak 60 minutes after pipetting S. epidermidis plus 2% PEG-8 Laurate onto anodes. The electricity produced by S. epidermidis caused significant growth attenuation and cell lysis of C. acnes. Intradermal injection of C. acnes and S. epidermidis plus PEG-8 Laurate into the mouse ear considerably suppressed the growth of C. acnes. This suppressive effect was noticeably reversed when cyclophilin A of S. epidermidis was inhibited, indicating the essential role of cyclophilin A in electricity production of S. epidermidis against C. acnes. In summary, we demonstrate for the first time that skin S. epidermidis, in the presence of PEG-8 Laurate, can mediate cyclophilin A to elicit an electrical current that has anti-C. acnes effects. Electricity generated by S. epidermidis may confer immediate innate immunity in acne lesions to rein in the overgrowth of C. acnes at the onset of acne vulgaris.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 579
Author(s):  
Lu-Te Chuang ◽  
Wen-Cheng Huang ◽  
Yu-Chen Hou ◽  
Jong-Ho Chyuan ◽  
Hsiang Chang ◽  
...  

Cutibacterium acnes (formerly Propionibacterium acnes) is one of the major bacterial species responsible for acne vulgaris. Numerous bioactive compounds from Momordica charantia Linn. var. abbreviata Ser. have been isolated and examined for many years. In this study, we evaluated the suppressive effect of two cucurbitane-type triterpenoids, 5β,19-epoxycucurbita-6,23-dien-3β,19,25-triol (Kuguacin R; KR) and 3β,7β,25-trihydroxycucurbita-5,23-dien-19-al (TCD) on live C. acnes-stimulated in vitro and in vivo inflammatory responses. Using human THP-1 monocytes, KR or TCD suppressed C. acnes-induced production of interleukin (IL)-1β, IL-6 and IL-8 at least above 56% or 45%, as well as gene expression of these three pro-inflammatory cytokines. However, a significantly strong inhibitory effect on production and expression of tumor necrosis factor (TNF)-α was not observed. Both cucurbitanes inhibited C. acnes-induced activation of the myeloid differentiation primary response 88 (MyD88) (up to 62%) and mitogen-activated protein kinases (MAPK) (at least 36%). Furthermore, TCD suppressed the expression of pro-caspase-1 and cleaved caspase-1 (p10). In a separate study, KR or TCD decreased C. acnes-stimulated mouse ear edema by ear thickness (20% or 14%), and reduced IL-1β-expressing leukocytes and neutrophils in mouse ears. We demonstrated that KR and TCD are potential anti-inflammatory agents for modulating C. acnes-induced inflammation in vitro and in vivo.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1095
Author(s):  
Kuang-Hung Hsiao ◽  
Chun-Ming Huang ◽  
Yu-Hsiang Lee

Acne vulgaris is one of the most prevalent dermatological diseases among adolescents and is often associated with overgrowth of Cutibacterium acnes (C. acnes) in the pilosebaceous units. In this study, we aimed to develop novel rifampicin (RIF) and indocyanine green (ICG) co-loaded perfluorocarbon nanodroplets named RIPNDs which can simultaneously provide photo-, chemo-, and probiotic-antimicrobility, and explore their efficacy in treatment of C. acnes in vitro and in vivo. The RIPNDs were first characterized as being spherical in shape, with a size of 238.6 ± 7.51 nm and surface charge of −22.3 ± 3.5 mV. Then, the optimal dosages of Staphylococcus epidermidis–produced fermentation product medium (FPM) and RIPND were determined as 25% (v/v) and [RIF]/[ICG] = 3.8/20 μM, respectively, based on the analyses of inhibition zone and cytotoxicity in vitro. Through the in vivo study using C. acnes–inoculated mice, our data showed that the group treated with FPM followed by RIPNDs + near infrared (NIR) irradiation obtained the least granulocytes/macrophage-inflammatory protein 2 expression level in the epidermis, and showed a significantly lower microbial colony population compared to the groups treated with equal amount of RIF, FPM, RIPNDs, and/or combination of the above ± NIR. These results indicated that the RIPND-mediated photo–chemo–probiotic therapeutics was indeed able to rapidly suppress inflammatory response of the skin and provide a robust antibacterial effect against C. acnes with limited use of antibiotics. Taken altogether, we anticipate that the RIPND is highly potential for use in the clinical treatment of acne vulgaris.


2021 ◽  
Vol 9 (7) ◽  
pp. 1486
Author(s):  
Marcela Espinoza-Monje ◽  
Jorge Campos ◽  
Eduardo Alvarez Villamil ◽  
Alonso Jerez ◽  
Stefania Dentice Maidana ◽  
...  

Previously, we isolated lactic acid bacteria from the slime of the garden snail Helix aspersa Müller and selected Weissella viridescens UCO-SMC3 because of its ability to inhibit in vitro the growth of the skin-associated pathogen Cutibacterium acnes. The present study aimed to characterize the antimicrobial and immunomodulatory properties of W. viridescens UCO-SMC3 and to demonstrate its beneficial effect in the treatment of acne vulgaris. Our in vitro studies showed that the UCO-SMC3 strain resists adverse gastrointestinal conditions, inhibits the growth of clinical isolates of C. acnes, and reduces the adhesion of the pathogen to keratinocytes. Furthermore, in vivo studies in a mice model of C. acnes infection demonstrated that W. viridescens UCO-SMC3 beneficially modulates the immune response against the skin pathogen. Both the oral and topical administration of the UCO-SCM3 strain was capable of reducing the replication of C. acnes in skin lesions and beneficially modulating the inflammatory response. Of note, orally administered W. viridescens UCO-SMC3 induced more remarkable changes in the immune response to C. acnes than the topical treatment. However, the topical administration of W. viridescens UCO-SMC3 was more efficient than the oral treatment to reduce pathogen bacterial loads in the skin, and effects probably related to its ability to inhibit and antagonize the adhesion of C. acnes. Furthermore, a pilot study in acne volunteers demonstrated the capacity of a facial cream containing the UCO-SMC3 strain to reduce acne lesions. The results presented here encourage further mechanistic and clinical investigations to characterize W. viridescens UCO-SMC3 as a probiotic for acne vulgaris treatment.


Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2620
Author(s):  
Mi-Jin Yim ◽  
Jeong Min Lee ◽  
Hyun-Soo Kim ◽  
Grace Choi ◽  
Young-Mog Kim ◽  
...  

Acne vulgaris is a chronic inflammatory condition of skin sebaceous follicles. To explore its effects on acne vulgaris, we investigated the antibacterial and anti-inflammatory activities of Sargassum miyabei Yendo (a brown alga) ethanolic extract (SMYEE) on Cutibacterium acnes (C. acnes)-stimulated inflammatory responses, both in vivo and in vitro. To induce inflammation in vivo, C. acnes was intradermally injected into the dorsal skin of mice, to which SMYEE was applied. The antimicrobial activity of SMYEE was evaluated by the determination of minimum inhibitory concentrations (MICs). To explore in vitro anti-inflammatory effects, HaCaT cells were stimulated with C. acnes after treatment with SMYEE. The levels of IL-8 and the underlying molecular effects in C. acnes-stimulated HaCaT cells were assessed by enzyme-linked immunosorbent assay, Western blotting, and an electrophoretic mobility shift assay. Mouse skin lesions improved after treatment with SMYEE (50 μg/mouse). Neutrophil infiltration was significantly reduced in SMYEE-treated compared to SMYEE-untreated skin lesions. SMYEE reversed the C. acnes-induced increase in IL-8 levels in HaCaT cells and suppressed dHL-60 cell migration. SMYEE also inhibited C. acnes-induced phosphorylation of the extracellular signal-regulated kinase and inhibited activator protein-1 signaling. SMYEE may be a useful treatment for C. acnes-induced acne vulgaris.


Author(s):  
Vicky Bronnec ◽  
Hinnerk Eilers ◽  
Anika C. Jahns ◽  
Hélène Omer ◽  
Oleg A. Alexeyev

Acne vulgaris is the most common dermatological disorder worldwide affecting more than 80% of adolescents and young adults with a global prevalence of 231 million cases in 2019. The involvement of the skin microbiome disbalance in the pathophysiology of acne is recognized, especially regarding the relative abundance and diversity of Propionibacterium acnes a well-known dominant human skin commensal. Biofilms, where bacteria are embedded into a protective polymeric extracellular matrix, are the most prevalent life style for microorganisms. P. acnes and its biofilm-forming ability is believed to be a contributing factor in the development of acne vulgaris, the persistence of the opportunistic pathogen and antibiotic therapy failures. Degradation of the extracellular matrix is one of the strategies used by bacteria to disperse the biofilm of competitors. In this study, we report the identification of an endogenous extracellular nuclease, BmdE, secreted by Propionibacterium granulosum able to degrade P. acnes biofilm both in vivo and in vitro. This, to our knowledge, may represent a novel competitive mechanism between two closely related species in the skin. Antibiotics targeting P. acnes have been the mainstay in acne treatment. Extensive and long-term use of antibiotics has led to the selection and spread of resistant bacteria. The extracellular DNase BmdE may represent a new bio-therapeutical strategy to combat P. acnes biofilm in acne vulgaris.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 819
Author(s):  
Yi-Hsien Shih ◽  
Donald Liu ◽  
Yen-Chou Chen ◽  
Ming-Hsuan Liao ◽  
Woan-Ruoh Lee ◽  
...  

Biofilms of Cutibacterium (C.) acnes (formerly Propionibacterium acnes) are responsible for the persistence and antibiotic resistance of acne vulgaris. In addition to the standard treatments for acne vulgaris, a common adjunctive treatment is the topical administration of nicotinamide (NAM). However, the effects of NAM on biofilms of C. acnes have never been explored. This study comprehensively investigates the effects of NAM against biofilms of C. acnes using in vitro and in vivo approaches. The results showed that NAM potentiated the efficacy of suboptimal dosing of tetracycline against C. acnes. Moreover, NAM alone decreased the formation and increased the degradation of biofilms in C. acnes. The antibiofilm effect of NAM against C. acnes was further enhanced in combination with deoxyribonuclease (DNase) I, an enzyme with known antibiofilm properties. The computational molecular docking, surface plasmon resonance analysis, and enzymatic kinetic assay demonstrated that NAM binds to DNase I and accelerated its reaction. In conclusion, NAM activates DNase I to attenuate biofilms of C. acnes. This offers valuable insights into the strategies against biofilms that are worth elaborating on in other biofilm-related chronic cutaneous infections in the future.


2021 ◽  
Vol 22 (5) ◽  
pp. 2347
Author(s):  
Manu N. Capoor ◽  
Anna Konieczna ◽  
Andrew McDowell ◽  
Filip Ruzicka ◽  
Martin Smrcka ◽  
...  

Previously, we proposed the hypothesis that similarities in the inflammatory response observed in acne vulgaris and degenerative disc disease (DDD), especially the central role of interleukin (IL)-1β, may be further evidence of the role of the anaerobic bacterium Cutibacterium (previously Propionibacterium) acnes in the underlying aetiology of disc degeneration. To investigate this, we examined the upregulation of IL-1β, and other known IL-1β-induced inflammatory markers and neurotrophic factors, from nucleus-pulposus-derived disc cells infected in vitro with C. acnes for up to 48 h. Upon infection, significant upregulation of IL-1β, alongside IL-6, IL-8, chemokine (C-C motif) ligand 3 (CCL3), chemokine (C-C motif) ligand 4 (CCL4), nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), was observed with cells isolated from the degenerative discs of eight patients versus non-infected controls. Expression levels did, however, depend on gene target, multiplicity and period of infection and, notably, donor response. Pre-treatment of cells with clindamycin prior to infection significantly reduced the production of pro-inflammatory mediators. This study confirms that C. acnes can stimulate the expression of IL-1β and other host molecules previously associated with pathological changes in disc tissue, including neo-innervation. While still controversial, the role of C. acnes in DDD remains biologically credible, and its ability to cause disease likely reflects a combination of factors, particularly individualised response to infection.


2020 ◽  
Vol 12 (04) ◽  
pp. 233-238
Author(s):  
Ashvini K. Yadav ◽  
Suneel Bhooshan ◽  
Allen Johnson ◽  
Dinesh P. Asati ◽  
Shashwati Nema ◽  
...  

Abstract Purpose Cutibacterium acnes (C. acnes) is an emerging pathogen that is highly resistant to antibiotics and is capable of causing persistent infections that are difficult to treat. Methods & Materials Acne vulgaris patients visiting dermatology OPD of our tertiary care hospital during the study period of 2 months were recruited. Skin swabs were collected, and the sample was processed on 5% sheep-blood agar for anaerobic culture by the GasPak method. Isolates were identified by the standard biochemical test. Antimicrobial susceptibility testing was performed for clinically relevant antibiotics by the E-strip method. The clinical response was evaluated after 1-month follow-up to the prescribed antibiotics. Results Minocycline, doxycycline, ceftriaxone, and tetracycline were the most effective antibiotics. Nonsusceptibility to clindamycin and erythromycin were observed in 11.9% and 31% isolates, respectively, with 9.5% isolates being nonsusceptible to both. For none of the antibiotics we found significant difference in the proportion of susceptible and nonsusceptible isolates between mild, moderate, and severe grades of acne vulgaris. For none of the antibiotic regimens, significant difference was observed between nonresponders and responders. Twenty-seven patients received clindamycin and among them 16 of 19 responders and 6 of 8 nonresponders yielded growth of clindamycin-susceptible isolates (p = 0.57). Conclusion We observed significant prevalence of resistant strains of C. acnes among patients with acne vulgaris. No association was observed between in vitro susceptibility results and treatment outcome.


2001 ◽  
Vol 69 (6) ◽  
pp. 4079-4085 ◽  
Author(s):  
Sarah E. Cramton ◽  
Martina Ulrich ◽  
Friedrich Götz ◽  
Gerd Döring

ABSTRACT Products of the intercellular adhesion (ica) operon in Staphylococcus aureus and Staphylococcus epidermidis synthesize a linear β-1,6-linked glucosaminylglycan. This extracellular polysaccharide mediates bacterial cell-cell adhesion and is required for biofilm formation, which is thought to increase the virulence of both pathogens in association with prosthetic biomedical implants. The environmental signal(s) that triggers ica gene product and polysaccharide expression is unknown. Here we demonstrate that anaerobic in vitro growth conditions lead to increased polysaccharide expression in both S. aureus and S. epidermidis, although the regulation is less stringent inS. epidermidis. Anaerobiosis also dramatically stimulates ica-specific mRNA expression inica- and polysaccharide-positive strains of both S. aureus and S. epidermidis.These data suggest a mechanism whereby ica gene expression and polysaccharide production may act as a virulence factor in an anaerobic environment in vivo.


Sign in / Sign up

Export Citation Format

Share Document