scholarly journals Homology between SARS CoV-2 and human proteins

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vladimir Khavinson ◽  
Alexander Terekhov ◽  
Dmitry Kormilets ◽  
Alexander Maryanovich

AbstractAn extremely high contagiousness of SARS CoV-2 indicates that the virus developed the ability to deceive the innate immune system. The virus could have included in its outer protein domains some motifs that are structurally similar to those that the potential victim's immune system has learned to ignore. The similarity of the primary structures of the viral and human proteins can provoke an autoimmune process. Using an open-access protein database Uniprot, we have compared the SARS CoV-2 proteome with those of other organisms. In the SARS CoV-2 spike (S) protein molecule, we have localized more than two dozen hepta- and octamers homologous to human proteins. They are scattered along the entire length of the S protein molecule, while some of them fuse into sequences of considerable length. Except for one, all these n-mers project from the virus particle and therefore can be involved in providing mimicry and misleading the immune system. All hepta- and octamers of the envelope (E) protein, homologous to human proteins, are located in the viral transmembrane domain and form a 28-mer protein E14-41. The involvement of the protein E in provoking an autoimmune response (after the destruction of the virus particle) seems to be highly likely. Some SARS CoV-2 nonstructural proteins may also be involved in this process, namely ORF3a, ORF7a, ORF7b, ORF8, and ORF9b. It is possible that ORF7b is involved in the dysfunction of olfactory receptors, and the S protein in the dysfunction of taste perception.

Author(s):  
Darja Kanduc

AbstractBy examining the issue of the thromboses and hemostasis disorders associated with severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) through the lens of cross-reactivity, it was found that 60 pentapeptides are shared by SARS-CoV-2 spike glycoprotein (gp) and human proteins that— when altered, mutated, deficient or, however, improperly functioning— cause vascular diseases, thromboembolic complications, venous thrombosis, thrombocytopenia, coagulopathies, and bleeding, inter alia. The peptide commonality has a relevant immunological potential as almost all of the shared sequences are present in experimentally validated SARS-CoV-2 spike gp-derived epitopes, thus supporting the possibility of cross-reactions between the viral gp and the thromboses-related human proteins. Moreover, many of the shared peptide sequences are also present in pathogens to which individuals have previously been exposed following natural infection or vaccinal routes, and of which the immune system has stored imprint. Such an immunological memory might rapidly trigger anamnestic secondary cross-reactive responses of extreme affinity and avidity, in this way explaining the thromboembolic adverse events that can associate with SARS-CoV-2 infection or active immunization.


2021 ◽  
Vol 13 ◽  
Author(s):  
Ruichen Su ◽  
Tian Zhou

Parkinson’s disease (PD) is a neurodegenerative disorder closely related to immunity. An important aspect of the pathogenesis of PD is the interaction between α-synuclein and a series of immune cells. Studies have shown that accumulation of α-synuclein can induce an autoimmune response that accelerates the progression of PD. This study discusses the mechanisms underlying the interaction between α-synuclein and the immune system. During the development of PD, abnormally accumulated α-synuclein becomes an autoimmune antigen that binds to Toll-like receptors (TLRs) that activate microglia, which differentiate into the microglia type 1 (M1) subtype. The microglia activate intracellular inflammatory pathways, induce the release of proinflammatory cytokines, and promote the differentiation of cluster of differentiation 4 + (CD4 +) T cells into proinflammatory T helper type 1 (Th1) and T helper type 17 (Th17) subtypes. Given the important role of α-synuclein in the immune system of the patients with PD, identifying potential targets of immunotherapy related to α-synuclein is critical for slowing disease progression. An enhanced understanding of immune-associated mechanisms in PD can guide the development of associated therapeutic strategies in the future.


2021 ◽  
Author(s):  
Rakesh Sarkar ◽  
Ritubrita Saha ◽  
Pratik Mallick ◽  
Ranjana Sharma ◽  
Amandeep Kaur ◽  
...  

India is currently facing the devastating second wave of COVID-19 pandemic resulting in approximately 4000 deaths per day. To control this pandemic continuous mutational surveillance and genomic epidemiology of circulating strains is very important. In this study, we performed mutational analysis of the protein coding genes of SARS-CoV-2 strains (n=2000) collected during January 2021 to March 2021. Our data revealed the emergence of a new variant in West Bengal, India, which is characterized by the presence of 11 co-existing mutations including D614G, P681H and V1230L in S-glycoprotein. This new variant was identified in 70 out of 412 sequences submitted from West Bengal. Interestingly, among these 70 sequences, 16 sequences also harbored E484K in the S glycoprotein. Phylogenetic analysis revealed strains of this new variant emerged from GR clade (B.1.1) and formed a new cluster. We propose to name this variant as GRL or lineage B.1.1/S:V1230L due to the presence of V1230L in S glycoprotein along with GR clade specific mutations. Co-occurrence of P681H, previously observed in UK variant, and E484K, previously observed in South African variant and California variant, demonstrates the convergent evolution of SARS-CoV-2 mutation. V1230L, present within the transmembrane domain of S2 subunit of S glycoprotein, has not yet been reported from any country. Substitution of valine with more hydrophobic amino acid leucine at position 1230 of the transmembrane domain, having role in S protein binding to the viral envelope, could strengthen the interaction of S protein with the viral envelope and also increase the deposition of S protein to the viral envelope, and thus positively regulate virus infection. P618H and E484K mutation have already been demonstrated in favor of increased infectivity and immune invasion respectively. Therefore, the new variant having G614G, P618H, P1230L and E484K is expected to have better infectivity, transmissibility and immune invasion characteristics, which may pose additional threat along with B.1.617 in the ongoing COVID-19 pandemic in India.


2020 ◽  
Vol 26 (5-6) ◽  
pp. 455-470
Author(s):  
Yuri I. Arshavsky

Although Alzheimer’s disease (AD) was described over a century ago, there are no effective approaches to its prevention and treatment. Such a slow progress is explained, at least in part, by our incomplete understanding of the mechanisms underlying the pathogenesis of AD. Here, I champion a hypothesis whereby AD is initiated on a disruption of the blood-brain barrier (BBB) caused by either genetic or non-genetic risk factors. The BBB disruption leads to an autoimmune response against pyramidal neurons located in the allo- and neocortical structures involved in memory formation and storage. The response caused by the adaptive immune system is not strong enough to directly kill neurons but may be sufficient to make them selectively vulnerable to neurofibrillary pathology. This hypothesis is based on the recent data showing that memory formation is associated with epigenetic chromatin modifications and, therefore, may be accompanied by expression of memory-specific proteins recognized by the immune system as “non-self” antigens. The autoimmune hypothesis is testable, and I discuss potential ways for its experimental and clinical verification. If confirmed, this hypothesis can radically change therapeutic approaches to AD prevention and treatment.


2019 ◽  
Vol 7 (3) ◽  
pp. 67 ◽  
Author(s):  
Sidharth Mishra ◽  
Shaohua Wang ◽  
Ravinder Nagpal ◽  
Brandi Miller ◽  
Ria Singh ◽  
...  

Type 1-diabetes (T1D) is an autoimmune disease characterized by immune-mediated destruction of pancreatic beta (β)-cells. Genetic and environmental interactions play an important role in immune system malfunction by priming an aggressive adaptive immune response against β-cells. The microbes inhabiting the human intestine closely interact with the enteric mucosal immune system. Gut microbiota colonization and immune system maturation occur in parallel during early years of life; hence, perturbations in the gut microbiota can impair the functions of immune cells and vice-versa. Abnormal gut microbiota perturbations (dysbiosis) are often detected in T1D subjects, particularly those diagnosed as multiple-autoantibody-positive as a result of an aggressive and adverse immunoresponse. The pathogenesis of T1D involves activation of self-reactive T-cells, resulting in the destruction of β-cells by CD8+ T-lymphocytes. It is also becoming clear that gut microbes interact closely with T-cells. The amelioration of gut dysbiosis using specific probiotics and prebiotics has been found to be associated with decline in the autoimmune response (with diminished inflammation) and gut integrity (through increased expression of tight-junction proteins in the intestinal epithelium). This review discusses the potential interactions between gut microbiota and immune mechanisms that are involved in the progression of T1D and contemplates the potential effects and prospects of gut microbiota modulators, including probiotic and prebiotic interventions, in the amelioration of T1D pathology, in both human and animal models.


2020 ◽  
Vol 11 ◽  
Author(s):  
Mingqin Zhu ◽  
Yuetao Ma ◽  
Anastasia Zekeridou ◽  
Vanda A. Lennon

Paraneoplastic autoimmune neurological disorders reflect tumor-initiated immune responses against onconeural antigens. Symptoms and signs can affect the central and/or peripheral nervous systems, neuromuscular junction or muscle, and typically evolve subacutely before an underlying neoplasm is discovered. We describe four patients whose neurological symptoms were precipitated by potent innate immune system challenges: bladder instillation of BCG, tick bite and an “alternative cancer therapy” with bacterial extracts and TNF-α. We hypothesize that a tumor-initiated autoimmune response (evidenced by autoantibody profiles), pre-dating the immune system challenge, was unmasked or amplified in these patients by cytokines released systemically from innate immune cells activated by microbial pathogen-associated molecular patterns (PAMPs). The resultant upregulation of cognate onconeural peptides as MHC1 protein complexes on neural cell surfaces would render those cells susceptible to killing by CD8+ T cells, thus precipitating the patient's neurological symptoms.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Mohammad javad Tavassolifar ◽  
Mohammad Vodjgani ◽  
Zahra Salehi ◽  
Maryam Izad

Multiple roles have been indicated for reactive oxygen species (ROS) in the immune system in recent years. ROS have been extensively studied due to their ability to damage DNA and other subcellular structures. Noticeably, they have been identified as a pivotal second messenger for T-cell receptor signaling and T-cell activation and participate in antigen cross-presentation and chemotaxis. As an agent with direct toxic effects on cells, ROS lead to the initiation of the autoimmune response. Moreover, ROS levels are regulated by antioxidant systems, which include enzymatic and nonenzymatic antioxidants. Enzymatic antioxidants include superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase. Nonenzymatic antioxidants contain vitamins C, A, and E, glutathione, and thioredoxin. Particularly, cellular antioxidant systems have important functions in maintaining the redox system homeostasis. This review will discuss the significant roles of ROS generation and antioxidant systems under normal conditions, in the immune system, and pathogenesis of multiple sclerosis.


2021 ◽  
Vol 22 (21) ◽  
pp. 11327
Author(s):  
Helena Idborg ◽  
Vilija Oke

Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease. The disease is characterized by activation and dysregulation of both the innate and the adaptive immune systems. The autoimmune response targets self-molecules including cell nuclei, double stranded DNA and other intra and extracellular structures. Multiple susceptibility genes within the immune system have been identified, as well as disturbances in different immune pathways. SLE may affect different organs and organ systems, and organ involvement is diverse among individuals. A universal understanding of pathophysiological mechanism of the disease, as well as directed therapies, are still missing. Cytokines are immunomodulating molecules produced by cells of the immune system. Interferons (IFNs) are a broad group of cytokines, primarily produced by the innate immune system. The IFN system has been observed to be dysregulated in SLE, and therefore IFNs have been extensively studied with a hope to understand the disease mechanisms and identify novel targeted therapies. In several autoimmune diseases identification and subsequent blockade of specific cytokines has led to successful therapies, for example tumor necrosis factor-alpha (TNF-α) inhibition in rheumatoid arthritis. Authors of this review have sought corresponding developments in SLE. In the current review, we cover the actual knowledge on IFNs and other studied cytokines as biomarkers and treatment targets in SLE.


2020 ◽  
Vol 9 ◽  
Author(s):  
Fabiola Gianella ◽  
Connie CW Hsia ◽  
Khashayar Sakhaee

After the initial description of extrarenal synthesis of 1,25-dihydroxyvitamin D (1,25-(OH)2D) three decades ago, extensive progress has been made in unraveling the immunomodulatory roles of vitamin D in the pathogenesis of granulomatous disorders, including sarcoidosis. It has been shown that 1,25-(OH)2D has dual effects on the immune system, including upregulating innate immunity as well as downregulating the autoimmune response. The latter mechanism plays an important role in the pathogenesis and treatment of sarcoidosis. Vitamin D supplementation in patients with sarcoidosis has been hampered owing to concerns about the development of hypercalcemia and hypercalciuria given that extrarenal 1-α hydroxylase is substrate dependent. Recently, a few studies have cast doubt over the mechanisms underlying the development of hypercalcemia in this population. These studies demonstrated an inverse relationship between the level of vitamin D and severity of sarcoidosis. Consequently, clinical interest has been piqued in the use of vitamin D to attenuate the autoimmune response in this disorder. However, the development of hypercalcemia and the attendant detrimental effects are real possibilities. Although the average serum calcium concentration did not change following vitamin D supplementation, in two recent studies, hypercalciuria occurred in one out of 13 and two out of 16 patients. This review is a concise summary of the literature, outlining past work and newer developments in the use of vitamin D in sarcoidosis. We feel that larger-scale placebo-controlled randomized studies are needed in this population. Since the current first-line treatment of sarcoidosis is glucocorticoids, which confer many systemic adverse effects, and steroid-sparing immunosuppressant treatment options carry additional risks of adverse effects, adjunct management with vitamin D in combination with potent anti-osteoporotic medications could minimize the risk of glucocorticoid-induced osteoporosis and modulate the immune system to attenuate disease activity in sarcoidosis.


2021 ◽  
Vol 5 (1) ◽  
pp. 077-086
Author(s):  
Nikhra Vinod

Introduction - evolution of SARS-CoV-2 variants: With the unrestrained pandemic for over last one-and-half year, SARS-CoV-2 seems to have adapted to its habitat, the human host, through mutations that facilitate its replication and transmission. The G variant incorporating D614G mutation, potently more transmissible than the ancestral virus arose during January 2020 and spread widely. Since then, various SARS-CoV-2 variants of concern (VOCs) and variants of interest (VOIs) with higher infectivity or virulence or both, have evolved on the background of G variant, and spread widely. SARS-CoV-2 infection and the immunodynamics: As the virus becomes more transmissible, its lethality may drop. Apart from the humoral immunity, T-cell recognition from a previous SARS-CoV-2 infection or vaccination may modify the disease transmission correlates and its clinical manifestations. On the other hand, the immunity generated may reduce probability of re-infection as well as limit evolution of adaptive mutations, and emergence of highly infectious and immune-escape variants. There are complex issues related to the SARS-CoV-2 evolutionary dynamics and host’s immunodynamics. Trending etiopathoimmunological correlates: The evolution potential of SARS-CoV-2 is limited because of proofreading function of nsp14. The S protein mutations affect transmissibility, virulence, and vaccine efficacy. The D614G mutation in G variant with higher infectivity has turned the Chinese epidemic into a pandemic. Other SARS-CoV-2 variants, such as Alpha, Beta, Gamma, and Delta seem to have evolved as result of adaptation to selective pressures during periods of prolonged infections and subsequent transmission. Further, there is issue of convergent association of mutations. Basics of immunity and immune system failure: The nature of the immune response after natural SARS-CoV-2 infection is variable and diverse. There are pre-existing neutralizing antibodies and sensitized T cells elicited during previous infection with seasonal CoVs influencing the disease susceptibility and course. The virus has evolved adaptive mechanisms to reduce its exposure to IFN-I and there are issues related to erratic and overactive immune response. The altered neutralizing epitopes in the S protein in SARS-CoV-2 variants modify the immune landscapes and clinical manifestations. Conclusion: current scenarios and prospects: Presently, the SARS-CoV-2 infection is widespread with multiple evolving infectious variants. There is probability of its transition from epidemic to endemic phase in due course manifesting as a mild disease especially in the younger population. Conversely, the pandemic may continue with enhanced disease severity due to evolving variants, expanded infection pool, and changing immunity landscape. There is need to plan for the transition and continued circulation of the virus during the endemic phase or continuing pandemic for indefinite period.


Sign in / Sign up

Export Citation Format

Share Document