scholarly journals Anthropogenic influence in observed regional warming trends and the implied social time of emergence

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Francisco Estrada ◽  
Dukpa Kim ◽  
Pierre Perron

AbstractThe attribution of climate change allows for the evaluation of the contribution of human drivers to observed warming. At the global and hemispheric scales, many physical and observation-based methods have shown a dominant anthropogenic signal, in contrast, regional attribution of climate change relies on physically based numerical climate models. Here we show, using state-of-the-art statistical tests, the existence of a common nonlinear trend in observed regional air surface temperatures largely imparted by anthropogenic forcing. All regions, continents and countries considered have experienced warming during the past century due to increasing anthropogenic radiative forcing. The results show that we now experience mean temperatures that would have been considered extreme values during the mid-20th century. The adaptation window has been getting shorter and is projected to markedly decrease in the next few decades. Our findings provide independent empirical evidence about the anthropogenic influence on the observed warming trend in different regions of the world.

2021 ◽  
pp. 1-52
Author(s):  
M.A. Altamirano del Carmen ◽  
F. Estrada ◽  
C. Gay-García

AbstractThe reliability of General Circulation Models (GCMs) is commonly associated with their ability to reproduce relevant aspects of observed climate and thus, the evaluation of GCMs performance has become a standard practice for climate change studies. As such, there is an ever-growing literature that focuses on developing and evaluating metrics to assess GCMs performance. In this paper it is shown that some commonly applied metrics provide little information for discriminating GCMs based on their performance, once uncertainty is included. A new methodology is proposed that differs from common approaches in that it focuses on evaluating GCMs ability to reproduce the observed response of surface temperature to changes in external radiative forcing (RF), while controlling for observed and simulated variability. It uses formal statistical tests to evaluate two aspects of the warming trend that are central for climate change studies: 1) if the response to RF produced by a particular GCM is compatible with observations and 2) if the magnitudes of the observed and simulated rates of warming are statistically similar. We illustrate the proposed methodology by evaluating the ability of 21 GCMs to reproduce the observed warming trend at the global scale and eight sub-continental land domains. Results show that most of the GCMs provide an adequate representation of the observed warming trend for the global scale and for domains located in the southern hemisphere. However, GCMs tend to overestimate the warming rate for domains in the northern hemisphere, particularly since the mid-1990s.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Francisco Estrada ◽  
Dukpa Kim ◽  
Pierre Perron

AbstractDue to various feedback processes called Arctic amplification, the high-latitudes’ response to increases in radiative forcing is much larger than elsewhere in the world, with a warming more than twice the global average. Since the 1990’s, this rapid warming of the Arctic was accompanied by no-warming or cooling over midlatitudes in the Northern Hemisphere in winter (the hiatus). The decrease in the thermal contrast between Arctic and midlatitudes has been connected to extreme weather events in midlatitudes via, e.g., shifts in the jet stream towards the equator and increases in the probability of high-latitude atmospheric blocking. Here we present an observational attribution study showing the spatial structure of the response to changes in radiative forcing. The results also connect the hiatus with diminished contrast between temperatures over regions in the Arctic and midlatitudes. Recent changes in these regional warming trends are linked to international actions such as the Montreal Protocol, and illustrate how changes in radiative forcing can trigger unexpected responses from the climate system. The lesson for climate policy is that human intervention with the climate is already large enough that even if stabilization was attained, impacts from an adjusting climate are to be expected.


2021 ◽  
Author(s):  
Arshad Nair ◽  
Fangqun Yu ◽  
Pedro Campuzano Jost ◽  
Paul DeMott ◽  
Ezra Levin ◽  
...  

Abstract Cloud condensation nuclei (CCN) are mediators of aerosol–cloud interactions, which contribute to the largest uncertainty in climate change prediction. Here, we present a machine learning/artificial intelligence model that quantifies CCN from variables of aerosol composition, atmospheric trace gases, and meteorology. Comprehensive multi-campaign airborne measurements, covering varied physicochemical regimes in the troposphere, confirm the validity of and help probe the inner workings of this machine learning model: revealing for the first time that different ranges of atmospheric aerosol composition and mass correspond to distinct aerosol number size distributions. Machine learning extracts this information, important for accurate quantification of CCN, additionally from both chemistry and meteorology. This can provide a physicochemically explainable, computationally efficient, robust machine learning pathway in global climate models that only resolve aerosol composition; potentially mitigating the uncertainty of effective radiative forcing due to aerosol–cloud interactions (ERFaci) and improving confidence in assessment of anthropogenic contributions and climate change projections.


2018 ◽  
Vol 31 (8) ◽  
pp. 3249-3264 ◽  
Author(s):  
Michael P. Byrne ◽  
Tapio Schneider

AbstractThe regional climate response to radiative forcing is largely controlled by changes in the atmospheric circulation. It has been suggested that global climate sensitivity also depends on the circulation response, an effect called the “atmospheric dynamics feedback.” Using a technique to isolate the influence of changes in atmospheric circulation on top-of-the-atmosphere radiation, the authors calculate the atmospheric dynamics feedback in coupled climate models. Large-scale circulation changes contribute substantially to all-sky and cloud feedbacks in the tropics but are relatively less important at higher latitudes. Globally averaged, the atmospheric dynamics feedback is positive and amplifies the near-surface temperature response to climate change by an average of 8% in simulations with coupled models. A constraint related to the atmospheric mass budget results in the dynamics feedback being small on large scales relative to feedbacks associated with thermodynamic processes. Idealized-forcing simulations suggest that circulation changes at high latitudes are potentially more effective at influencing global temperature than circulation changes at low latitudes, and the implications for past and future climate change are discussed.


2020 ◽  
Author(s):  
Geert Jan van Oldenborgh ◽  
Folmer Krikken ◽  
Sophie Lewis ◽  
Nicholas J. Leach ◽  
Flavio Lehner ◽  
...  

Abstract. Disastrous bushfires during the last months of 2019 and January 2020 affected Australia, raising the question to what extent the risk of these fires was exacerbated by anthropogenic climate change. To answer the question for southeastern Australia, where fires were particularly severe, affecting people and ecosystems, we use a physically-based index of fire weather, the Fire Weather Index, long-term observations of heat and drought, and eleven large ensembles of state-of-the-art climate models. In agreement with previous analyses we find that heat extremes have become more likely by at least a factor two due to the long-term warming trend. However, current climate models overestimate variability and tend to underestimate the long-term trend in these extremes, so the true change in the likelihood of extreme heat could be larger. We do not find an attributable trend in either extreme annual drought or the driest month of the fire season September–February. The observations, however, show a weak drying trend in the annual mean. Finally, we find large trends in the Fire Weather Index in the ERA5 reanalysis, and a smaller but significant increase by at least 30 % in the models. The trend is mainly driven by the increase of temperature extremes and hence also likely underestimated. For the 2019/20 season more than half of the July–December drought was driven by record excursions of the Indian Ocean dipole and Southern Annular Mode. These factors are included in the analysis. The study reveals the complexity of the 2019/20 bushfire event, with some, but not all drivers showing an imprint of anthropogenic climate change.


2006 ◽  
Vol 6 (3) ◽  
pp. 575-599 ◽  
Author(s):  
M. Gauss ◽  
G. Myhre ◽  
I. S. A. Isaksen ◽  
V. Grewe ◽  
G. Pitari ◽  
...  

Abstract. Changes in atmospheric ozone have occurred since the preindustrial era as a result of increasing anthropogenic emissions. Within ACCENT, a European Network of Excellence, ozone changes between 1850 and 2000 are assessed for the troposphere and the lower stratosphere (up to 30 km) by a variety of seven chemistry-climate models and three chemical transport models. The modeled ozone changes are taken as input for detailed calculations of radiative forcing. When only changes in chemistry are considered (constant climate) the modeled global-mean tropospheric ozone column increase since preindustrial times ranges from 7.9 DU to 13.8 DU among the ten participating models, while the stratospheric column reduction lies between 14.1 DU and 28.6 DU in the models considering stratospheric chemistry. The resulting radiative forcing is strongly dependent on the location and altitude of the modeled ozone change and varies between 0.25 Wm−2 and 0.45 Wm−2 due to ozone change in the troposphere and −0.123 Wm−2 and +0.066 Wm−2 due to the stratospheric ozone change. Changes in ozone and other greenhouse gases since preindustrial times have altered climate. Six out of the ten participating models have performed an additional calculation taking into account both chemical and climate change. In most models the isolated effect of climate change is an enhancement of the tropospheric ozone column increase, while the stratospheric reduction becomes slightly less severe. In the three climate-chemistry models with detailed tropospheric and stratospheric chemistry the inclusion of climate change increases the resulting radiative forcing due to tropospheric ozone change by up to 0.10 Wm−2, while the radiative forcing due to stratospheric ozone change is reduced by up to 0.034 Wm−2. Considering tropospheric and stratospheric change combined, the total ozone column change is negative while the resulting net radiative forcing is positive.


Author(s):  
Cristina Andrade ◽  
Joana Contente ◽  
João Andrade Santos

The assessment of aridity conditions is a key factor for water management and the implementation of mitigation and adaptation policies in agroforestry systems. Towards this aim three aridity indices were computed for the Iberian Peninsula (IP): the De Martonne Index (DMI), the Pinna Combinative Index (PCI), and the Erinç Aridity Index (EAI). These three indices were first computed for the baseline period 1961‒1990, using a gridded observational data (E-OBS), and, subsequently, for the periods 2011‒2040 (short-range) and 2041‒2070 (medium-range) using an ensemble of six Regional Climate Models (RCMs) experiments generated by the EURO-CORDEX project. Two Representative Concentration Pathways (RCPs) were analyzed, an intermediate anthropogenic radiative forcing scenario (RCP4.5) and a fossil-intensive emission scenario (RCP8.5). Overall, the three indices disclose a strengthening of aridity and dry conditions in central and southern Iberia until 2070, mainly under RCP8.5. Strong(weak) statistically significant correlations were found between these indices and the total mean precipitation (mean temperature) along with projected significant decreasing(increasing) trends for precipitation(temperature). The prevalence of years with arid conditions (above 70% for 2041‒2070 under both RCPs) are projected to have major impacts in some regions, such as southern Portugal, Extremadura, Castilla-La Mancha, Comunidad de Madrid, Andalucía, Región de Murcia, Comunidad Valenciana, and certain regions within the Aragón province. The projected increase in both the intensity and persistence of aridity conditions in a broader southern half of Iberia will exacerbate the exposure and vulnerability of this region to climate change, while the risk of multi-level desertification should be thoroughly integrated into regional and national water management and planning.


2021 ◽  
Author(s):  
Haiyan Teng ◽  
Ruby Leung ◽  
Grant Branstator ◽  
Jian Lu ◽  
Qinghua Ding

<p>The northern midlatitude summer has experienced rapid warming since the 1990s, especially in Europe, Central Siberia-Mongolia, the West Coast of North America as well as several continental Arctic regions. These “hot spots” are connected by a chain of high-pressure ridges from an anomalous wavenumber-5 Rossby wave train in the upper troposphere.  Here by cross-examining reanalysis datasets and a suite of Coupled Model Intercomparison Project Phase 6 (CMIP6) baseline experiments, we demonstrate that the anthropogenically forced response may be intertwined with internal multidecadal variability, making it difficult to partition the 1979-2020 trend with state-of-the-art climate models. Instead, we take a “storyline” approach with a planetary wave model and sensitivity experiments with an Earth system model to explore key underlying driving factors. Our results highlight the importance of multiscale interaction with synoptic eddy via atmosphere-ocean and atmosphere-land coupling in shaping the multidecadal regional warming trend which has enormous socioeconomic implications. </p>


2020 ◽  
Author(s):  
Felicitas Hansen ◽  
Danijel Belusic ◽  
Klaus Wyser

<p>The large-scale atmospheric circulation is one of the most important factors influencing weather and climate conditions on different timescales. Its short- and long-term changes considerably determine both mean and extreme values of surface parameters like temperature or precipitation rates. Future changes of circulation patterns are of particular interest as these may significantly alter or amplify the expected thermodynamic changes due to changing concentrations of greenhouse gases, albedo and land use. We analyse both historical as well as future climate simulations of the SMHI large ensemble (S-LENS) performed with the EC-Earth3 global climate model to examine large-scale circulation situations and their association to extremes in precipitation and temperature over Sweden. Various methods exist to classify mostly sea level pressure or geopotential height fields into characteristic circulation types, and we compare several of these methods for their applicability to represent precipitation and temperature variability over our region of interest. S-LENS consists of a 50-member ensemble for a historical period (1970-2014) and four 50-member climate change scenario ensembles covering the 21st century differing in terms of assumptions made for future radiative forcing development. We study the efficiency of circulation types in the historical period to give rise to extremes, and examine further the frequency and within-type changes of those circulation types associated with extremes by the middle and the end of the 21st century under the different climate change scenarios. S-LENS with its comparatively large number of both multi-decadal scenarios and realizations for each scenario serves as a perfect testbed to study potential changes in events of low frequency within the environment of a single model.</p>


2018 ◽  
Vol 11 (6) ◽  
pp. 2273-2297 ◽  
Author(s):  
Christopher J. Smith ◽  
Piers M. Forster ◽  
Myles Allen ◽  
Nicholas Leach ◽  
Richard J. Millar ◽  
...  

Abstract. Simple climate models can be valuable if they are able to replicate aspects of complex fully coupled earth system models. Larger ensembles can be produced, enabling a probabilistic view of future climate change. A simple emissions-based climate model, FAIR, is presented, which calculates atmospheric concentrations of greenhouse gases and effective radiative forcing (ERF) from greenhouse gases, aerosols, ozone and other agents. Model runs are constrained to observed temperature change from 1880 to 2016 and produce a range of future projections under the Representative Concentration Pathway (RCP) scenarios. The constrained estimates of equilibrium climate sensitivity (ECS), transient climate response (TCR) and transient climate response to cumulative CO2 emissions (TCRE) are 2.86 (2.01 to 4.22) K, 1.53 (1.05 to 2.41) K and 1.40 (0.96 to 2.23) K (1000 GtC)−1 (median and 5–95 % credible intervals). These are in good agreement with the likely Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) range, noting that AR5 estimates were derived from a combination of climate models, observations and expert judgement. The ranges of future projections of temperature and ranges of estimates of ECS, TCR and TCRE are somewhat sensitive to the prior distributions of ECS∕TCR parameters but less sensitive to the ERF from a doubling of CO2 or the observational temperature dataset used to constrain the ensemble. Taking these sensitivities into account, there is no evidence to suggest that the median and credible range of observationally constrained TCR or ECS differ from climate model-derived estimates. The range of temperature projections under RCP8.5 for 2081–2100 in the constrained FAIR model ensemble is lower than the emissions-based estimate reported in AR5 by half a degree, owing to differences in forcing assumptions and ECS∕TCR distributions.


Sign in / Sign up

Export Citation Format

Share Document