scholarly journals Identification of two novel Chlorotoxin derivatives CA4 and CTX-23 with chemotherapeutic and anti-angiogenic potential

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Tengfei Xu ◽  
Zheng Fan ◽  
Wenxin Li ◽  
Barbara Dietel ◽  
Yingliang Wu ◽  
...  

Abstract Brain tumors are fast proliferating and destructive within the brain microenvironment. Effective chemotherapeutic strategies are currently lacking which combat this deadly disease curatively. The glioma-specific chloride ion channel represents a specific target for therapy. Chlorotoxin (CTX), a peptide derived from scorpion venom, has been shown to be specific and efficacious in blocking glioma Cl− channel activity. Here, we report on two new derivatives (termed CA4 and CTX-23) designed and generated on the basis of the peptide sequence alignments of CTX and BmKCT. The novel peptides CA4 and CTX-23 are both effective in reducing glioma cell proliferation. In addition, CTX, CA4 and CTX-23 impact on cell migration and spheroid migration. These effects are accompanied by diminished cell extensions and increased nuclear sizes. Furthermore, we found that CA4 and CTX-23 are selective with low toxicity against primary neurons and astrocytes. In the ex vivo VOGiM, which maintain the entire brain tumor microenvironment, both CTX and CA4 display anti-tumor activity and reduce tumor volume. Hence, CTX and CA4 reveal anti-angiogenic properties with endothelial and angiogenic hotspots disrupting activities. These data report on the identification of two novel CTX derivatives with multiple anti-glioma properties including anti-angiogenesis.

Author(s):  
Samad Beheshtirouy ◽  
Farhad Mirzaei ◽  
Shirin Eyvazi ◽  
Vahideh Tarhriz

: Breast cancer is a heterogeneous malignancy which is the second cause of mortality among women in the world. Increasing the resistance to anti-cancer drugs in breast cancer cells persuades researchers to search the novel therapies approaches for the treatment of the malignancy. Among the novel methods, therapeutic peptides which target and disrupt tumor cells have been of great interest. Therapeutic peptides are short amino acids monomer chains with high specificity to bind and modulate a protein interaction of interest. Several advantages of peptides such as specific binding on tumor cells surface, low molecular weight and low toxicity on normal cells make the peptides as an appealing therapeutic agents against solid tumors, particularly breast cancer. Also, National Institutes of Health (NIH) describes therapeutic peptides as suitable candidate for the treatment of drug-resistant breast cancer. In this review, we attempt to review the different therapeutic peptides against breast cancer cells which can be used in treatment and diagnosis of the malignancy. Meanwhile, we presented an overview of peptide vaccines which have been developed for the treatment of breast cancer.


2021 ◽  
Vol 22 (5) ◽  
pp. 2731
Author(s):  
Piotr Garnuszek ◽  
Urszula Karczmarczyk ◽  
Michał Maurin ◽  
Arkadiusz Sikora ◽  
Jolanta Zaborniak ◽  
...  

A new PSMA ligand (PSMA-D4) containing the Glu-CO-Lys pharmacophore connected with a new linker system (L-Trp-4-Amc) and chelator DOTA was developed for radiolabeling with therapeutic radionuclides. Herein we describe the synthesis, radiolabeling, and preliminary biological evaluation of the novel PSMA-D4 ligand. Synthesized PSMA-D4 was characterized using TOF-ESI-MS, NMR, and HPLC methods. The novel compound was subject to molecular modeling with GCP-II to compare its binding mode to analogous reference compounds. The radiolabeling efficiency of PSMA-D4 with 177Lu, 90Y, 47Sc, and 225Ac was chromatographically tested. In vitro studies were carried out in PSMA-positive LNCaP tumor cells membranes. The ex vivo tissue distribution profile of the radioligands and Cerenkov luminescence imaging (CLI) was studied in LNCaP tumor-bearing mice. PSMA-D4 was synthesized in 24% yield and purity >97%. The radio complexes were obtained with high yields (>97%) and molar activity ranging from 0.11 to 17.2 GBq mcmol−1, depending on the radionuclide. In vitro assays confirmed high specific binding and affinity for all radiocomplexes. Biodistribution and imaging studies revealed high accumulation in LNCaP tumor xenografts and rapid clearance of radiocomplexes from blood and non-target tissues. These render PSMA-D4 a promising ligand for targeted therapy of prostate cancer (PCa) metastases.


2021 ◽  
Vol 20 ◽  
pp. 153303382199000
Author(s):  
Gaolian Zhang ◽  
Meng Xia ◽  
Jianhui Guo ◽  
Yi Huang ◽  
Jianrong Huang ◽  
...  

Aberrant expression of microRNAs (miRNAs) has been reported to play a role in tumorigenesis. Dysfunction of miR-1296 was found in a variety of cancers, however, the function of miR-1296 in the progression of glioma remains largely understood. Here, our results showed that miR-1296 was significantly down-regulated in glioma tissues and cell lines. Decreased expression of miR-1296 was associated with the tumor size, WHO grade and karnofsky performance scale (KPS) of glioma patients. Low expression of miR-1296 was significantly correlated with the shorter 5-year overall survival of glioma patients. Overexpression of miR-1296 inhibited the proliferation, colony formation, migration and induced apoptosis of glioma cells. MiR-1296 was found to bind the 3’-untranslated region (UTR) of ABL proto-oncogene 2 (ABL2) and subsequently repressed both the mRNA and protein expression of ABL2. ABL2 was overexpressed in glioma tissues and inversely correlated with that of miR-1296. Ectopic expressed ABL2 could reverse the inhibitory effects of miR-1296 on glioma cell proliferation. Our results illustrated the novel tumor-suppressive function of miR-1296 in glioma via repressing ABL2, suggesting a potential application of miR-1296 in the treatment of glioma.


2018 ◽  
Vol 26 (7) ◽  
pp. 988-996
Author(s):  
Bryan F. Mitchell ◽  
Mei Chi ◽  
Elle Surgent ◽  
Bailey M. Sorochan ◽  
Curtis N. Tracey ◽  
...  

Background: Preterm birth is the most common cause of neonatal morbidity and mortality and a common precedent to lifelong disability. Current treatment has minimal efficacy. Objective: We assessed the role of isozymes of the protein kinase C (PKC) family in regulating the phosphorylation of myosin regulatory light chains (RLCs), which regulate uterine contractility. We also explored the mechanisms through which these isozymes function. Study Design: We used a previously characterized and validated quantitative in-cell Western (ICW) assay to measure site-specific phosphorylations on myosin RLC and CPI-17. Cultures of human uterine myocytes (hUM) were treated with the potent contractile stimulant oxytocin to induce uterine contractility or a pharmacological mimic of diacyl-glycerol to stimulate the conventional and novel isozymes of the PKC family. Combinations of isozyme-selective inhibitors were used to determine the effects of the conventional and novel classes of isozymes. Results: Stimulation of PKC using phospho-dibutyrate caused immediate, concentration-dependent inhibition of uterine activity ex vivo. Using the ICW assay with hUM, the oxytocin-stimulated increase in the pro-contractile phosphorylations of myosin RLCs at serine19 and threonine18 was completely inhibited by prior treatment with phorbol-12-myristate-13-acetate, which stimulates both convention and novel classes of isozymes. Our results suggest that the conventional class of isozymes cause a reduction in phosphorylations at serine19 and threonine18 by reducing activity of myosin light chain kinase. The novel class of isozymes has 2 mechanisms of action: the first is activation of CPI-17 through phosphorylation at threonine38, which results in reduced activity of myosin light chain phosphatase and increased levels of activated myosin RLC; the second is increased phosphorylation of the N-terminal region of myosin RLC. Conclusions: Specific agonists for the conventional isozymes or inhibitors of the novel isozymes of the PKC family could be useful pharmacological agents for regulation of uterine activity.


2020 ◽  
Author(s):  
Ozgun Kocabiyik ◽  
Valeria Cagno ◽  
Paulo Jacob Silva ◽  
Yong Zhu ◽  
Laura Sedano ◽  
...  

AbstractInfluenza is one of the most widespread viral infections worldwide and represents a major public health problem. The risk that one of the next pandemics is caused by an influenza strain is very high. It is very important to develop broad-spectrum influenza antivirals to be ready for any possible vaccine shortcomings. Anti-influenza drugs are available but they are far from ideal. Arguably, an ideal antiviral should target conserved viral domains and be virucidal, i.e. irreversibly inhibit viral infectivity. Here, we describe a new class of broad-spectrum anti-influenza macromolecules that meets these criteria and displays exceedingly low toxicity. These compounds are based on a cyclodextrin core modified on its primary face with long hydrophobic linkers terminated in 6’sialyl-N-acetyllactosamine (6’SLN) or 3’SLN. SLN enables nanomolar inhibition of the viruses while the hydrophobic linkers confer irreversibility to the inhibition. The combination of these two properties allows for efficacy in vitro against several human or avian influenza strains, as well as against a 2009 pandemic influenza strain ex vivo. Importantly, we show that, in mice, the compounds provide therapeutic efficacy when administered 24h post-infection allowing 90% survival as opposed to no survival for the placebo and oseltamivir..


1998 ◽  
Vol 79 (06) ◽  
pp. 1119-1125 ◽  
Author(s):  
Knut Nordal ◽  
Karsten Midtvedt ◽  
Timothy Goggin ◽  
Frank Brosstad ◽  
Gustav Lehne

SummaryActivation of the platelet membrane receptor glycoprotein (GP) IIb-IIIa is essential for thrombus formation. The novel nonpeptide GPIIb-IIIa antagonist, lamifiban, represents a promising approach for antiplatelet therapy in patients with cardiovascular disease. Since renal impairment frequently occurs in these patients, we designed a phase I study to assess the tolerability, pharmacodynamics and pharmacokinetics of lamifiban in patients with renal impairment. Four healthy volunteers (Group 1) with creatinine clearance (CLCR) >75 ml/min, eight patients (Group 2) with mild to moderately impaired renal function (CLCR 30-74 ml/min) and eight patients (Group 3) with severe renal impairment (CLCR 10-29 ml/min) were studied. They received stepwise increased doses of lamifiban intravenously (IV). There was a linear relationship between the systemic clearance of the drug and renal function (R2 = 0.86). The mean plasma concentration required for half-maximal inhibition of thrombin-receptor agonist peptide (TRAP) induced platelet aggregation (EC50) ex vivo was 21, 28 and 11 ng/ml in Groups 1, 2 and 3. The patients in Group 3 were sensitized to the anti-platelet effect allowing an 18-fold dosage reduction without compromising the pharmacodynamics. In conclusion, the decreased clearance of lamifiban may act in concert with increased potency of the drug in patients with severe renal impairment, and the drug dosage should be reduced accordingly.


Blood ◽  
2020 ◽  
Vol 136 (11) ◽  
pp. 1330-1341 ◽  
Author(s):  
Eugenio D. Hottz ◽  
Isaclaudia G. Azevedo-Quintanilha ◽  
Lohanna Palhinha ◽  
Lívia Teixeira ◽  
Ester A. Barreto ◽  
...  

Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emergent pathogen responsible for the coronavirus disease 2019 (COVID-19). Since its emergence, the novel coronavirus has rapidly achieved pandemic proportions causing remarkably increased morbidity and mortality around the world. A hypercoagulability state has been reported as a major pathologic event in COVID-19, and thromboembolic complications listed among life-threatening complications of the disease. Platelets are chief effector cells of hemostasis and pathological thrombosis. However, the participation of platelets in the pathogenesis of COVID-19 remains elusive. This report demonstrates that increased platelet activation and platelet-monocyte aggregate formation are observed in severe COVID-19 patients, but not in patients presenting mild COVID-19 syndrome. In addition, exposure to plasma from severe COVID-19 patients increased the activation of control platelets ex vivo. In our cohort of COVID-19 patients admitted to the intensive care unit, platelet-monocyte interaction was strongly associated with tissue factor (TF) expression by the monocytes. Platelet activation and monocyte TF expression were associated with markers of coagulation exacerbation as fibrinogen and D-dimers, and were increased in patients requiring invasive mechanical ventilation or patients who evolved with in-hospital mortality. Finally, platelets from severe COVID-19 patients were able to induce TF expression ex vivo in monocytes from healthy volunteers, a phenomenon that was inhibited by platelet P-selectin neutralization or integrin αIIb/β3 blocking with the aggregation inhibitor abciximab. Altogether, these data shed light on new pathological mechanisms involving platelet activation and platelet-dependent monocyte TF expression, which were associated with COVID-19 severity and mortality.


2018 ◽  
Vol 20 (5) ◽  
pp. 3381-3387 ◽  
Author(s):  
Kota Katayama ◽  
Yuji Furutani ◽  
Masayo Iwaki ◽  
Tetsuya Fukuda ◽  
Hiroo Imai ◽  
...  

ATR-FTIR spectroscopic study elucidates the novel role of Cl−-binding in primate long-wavelength-sensitive (LWS) visual pigment.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Rudolf A. Werner ◽  
Hiroshi Wakabayashi ◽  
Xinyu Chen ◽  
Nobuyuki Hayakawa ◽  
Constantin Lapa ◽  
...  

AbstractWe aimed to determine a detailed regional ventricular distribution pattern of the novel cardiac nerve PET radiotracer 18F-LMI1195 in healthy rabbits. Ex-vivo high resolution autoradiographic imaging was conducted to identify accurate ventricular distribution of 18F-LMI1195. In healthy rabbits, 18F-LMI1195 was administered followed by the reference perfusion marker 201Tl for a dual-radiotracer analysis. After 20 min of 18F-LMI1195 distribution time, the rabbits were euthanized, the hearts were extracted, frozen, and cut into 20-μm short axis slices. Subsequently, the short axis sections were exposed to a phosphor imaging plate to determine 18F-LMI1195 distribution (exposure for 3 h). After complete 18F decay, sections were re-exposed to determine 201Tl distribution (exposure for 7 days). For quantitative analysis, segmental regions of Interest (ROIs) were divided into four left ventricular (LV) and a right ventricular (RV) segment on mid-ventricular short axis sections. Subendocardial, mid-portion, and subepicardial ROIs were placed on the LV lateral wall. 18F-LMI1195 distribution was almost homogeneous throughout the LV wall without any significant differences in all four LV ROIs (anterior, posterior, septal and lateral wall, 99 ± 2, 94 ± 5, 94 ± 4 and 97 ± 3%LV, respectively, n.s.). Subepicardial 201Tl uptake was significantly lower compared to the subendocardial portion (subendocardial, mid-portion, and subepicardial activity: 90 ± 3, 96 ± 2 and *80 ± 5%LV, respectively, *p < 0.01 vs. mid-portion). This was in contradistinction to the transmural wall profile of 18F-LMI1195 (90 ± 4, 96 ± 5 and 84 ± 4%LV, n.s.). A slight but significant discrepant transmural radiotracer distribution pattern of 201Tl in comparison to 18F-LMI1195 may be a reflection of physiological sympathetic innervation and perfusion in rabbit hearts.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 863 ◽  
Author(s):  
Kathleen Ran ◽  
Jing Yang ◽  
Anil V. Nair ◽  
Biyue Zhu ◽  
Chongzhao Ran

CRANAD-28, a difluoroboron curcumin analogue, has been demonstrated in earlier reports to successfully label amyloid beta (Aβ) plaques for imaging both ex vivo and in vivo. CRANAD-28’s imaging brightness, ability to penetrate the blood brain barrier, and low toxicity make the compound a potentially potent imaging tool in Alzheimer’s research. In this study, the Aβ-labeling ability of CRANAD-28 was investigated in further detail using histological staining to assess different criteria, including stained Aβ plaque brightness, Aβ plaque size, and Aβ plaque number count. The results of this study demonstrated CRANAD-28 to be superior across all criteria assessed. Furthermore, CRANAD-28 and IBA-1 antibody were used to label Aβ-plaques and microglia respectively. Statistical analysis with Spearman regression revealed a statistically significant negative correlation between the size of labeled Aβ plaques and surrounding microglia density. This finding provides interesting insight into Aβ plaque and microglia dynamism in AD pathology and corroborates the findings of previous studies. In addition, we found that CRANAD-28 provided distinct spectral signatures for Aβs in the core and periphery of the plaques. Based on the study’s results, CRANAD-28 could be considered as an alternative standard for imaging Aβ-plaques in future research studies.


Sign in / Sign up

Export Citation Format

Share Document