Impact of Bubble Size on Flow Response to Transient Pressure Drop Through Converging Nozzle

Author(s):  
Aleksey Garbaly ◽  
Thomas Shepard

Abstract For homogenous two-phase bubbly flows, the theoretical speed of sound is dramatically reduced at moderate void fractions to speeds much lower than the speed of sound for either single phase. This theoretical speed of sound would suggest a propensity for bubbly flows to reach choked conditions when traveling through a convergent nozzle. However, for a bubbly flow to be considered homogenous requires assumptions that may not be realized in practical applications. In this experimental study, a bubbly flow was sent through a convergent nozzle before entering a large chamber. By setting steady flow conditions upstream and then reducing the chamber pressure via a vacuum pump, the transient response in terms of gas and liquid flow rates and upstream channel pressure was determined. The bubble size was carefully varied from ∼0.3–1 mm while holding gas and liquid flow rates constant in order to study how bubble size affects the transient flow characteristics. High-speed imaging was used for measuring the bubbles. Experiments were also conducted at two gas-liquid mass flow ratios. Results are presented to demonstrate the impact of bubble size and gas-liquid ratio on the transient response of upstream gas and liquid flow rates, upstream pressure and exit Mach number to the lowering of pressure downstream of the convergent nozzle. Results are presented both for flows that remained in the bubbly regime and for flows that transitioned to an annular flow regime during a trial.

Author(s):  
R. Kumar ◽  
T. A. Trabold ◽  
C. C. Maneri

Measurements of local void fraction, rise velocity and bubble diameter have been obtained for cocurrent, wall-heated, upward bubbly flows in a pressurized refrigerant. The instrumentation used was the gamma densitometer and the hot-film anemometer. Departure bubble size and bulk size measurements were also made and correlated with appropriate parameters. Flow visualization techniques have also been used to understand the two-phase flow structure and the behavior of the bubbly flow for different bubble shapes and sizes, and to obtain the rise velocity. Such insight, coupled with quantitative local and averaged data on void fraction and bubble size at different pressures, has aided in developing bubbly flow models applicable to heated two-phase flows at high pressure.


Author(s):  
Milnes P. David ◽  
Julie Steinbrenner ◽  
Josef Miler ◽  
Kenneth E. Goodson

Two-phase microfluidic cooling solutions have the potential to meet the thermal and geometric requirements of high performance microprocessors. However, rapid nucleation and growth of the vapor phase in the micro-scale flow structures produce detrimental rise in the system pressure and create flow instabilities. In our previous work we developed a novel solution to these problems: to locally vent the vapor formed in the microstructures by capping the flow structures with porous, hydrophobic membranes that allow only the trapped vapor phase to escape the system. In this paper we present the results from a visualization study of this venting process in a copper microchannel with a porous hydrophobic Teflon membrane wall and determine the impact of varying flow conditions on the venting process. We tested liquid flow rates of 0.1, 0.25 and 0.5 ml/min with air injection rates varying from 0.2 to 6 ml/min, corresponding to mass qualities of 0.1% to 7%. Bubbly/slug and wavy flows are dominant at the lower liquid and air flow rates, with wavy-stratified and stratified flows becoming dominant at higher air injection rates. At the highest liquid flow rate, plug and annular flows were common. Analysis finds that venting effectiveness is insensitive to Reliq until the point where non-contact flow structures such as annular become dominant and result in a loss of effective venting area. We also find that venting area changes linearly with mass quality and that the maximum venting effectiveness can be improved by increasing the venting area or raising the total static system pressure. However, venting effectiveness is fundamentally limited by the membrane conductance.


2003 ◽  
Vol 125 (3) ◽  
pp. 469-478 ◽  
Author(s):  
Ranganathan Kumar ◽  
Thomas A. Trabold ◽  
Charles C. Maneri

Measurements of local void fraction, rise velocity, and bubble diameter have been obtained for cocurrent, wall-heated, upward bubbly flows in a pressurized refrigerant. The instrumentation used are the gamma densitometer and the hot-film anemometer. Departure bubble size is correlated in terms of liquid subcooling and bulk bubble size in terms of void fraction. Flow visualization techniques have also been used to understand the two-phase flow structure and the behavior of the bubbly flow for different bubble shapes and sizes, and to obtain the bubble diameter and rise velocity. The lift model is provided explicitly in terms of Eotvos number which is changed by changing the system pressure. In general, Eotvos number plays a strong role in determining both bubbly lift and drag. Such insight coupled with quantitative local and averaged data on void fraction and bubble size at different pressures has aided in developing bubbly flow models applicable to heated two-phase flows at high pressure.


Author(s):  
Mona Hassanzadeh Jobehdar ◽  
Aly H. Gadallah ◽  
Kamran Siddiqui ◽  
Wajid A. Chishty

Gas injection into a liquid cross flow from a nozzle causes bubble formations which have potential applications in industry such as chemical plants, waste water treatment and bio- and nuclear-reactors. The purpose of this study is to experimentally investigate the effects of nozzle shape and configuration with respect to the liquid cross-flow direction, on the bubbly flow characteristics such as bubble formation, detached bubble size and frequency at different gas and liquid flow rates. The experiments were conducted in a Plexiglas two-dimensional rig using a high speed camera. High speed imaging and an image processing algorithm were used to track each individual bubble and to quantify the bubble growth as well as the detachment frequency and the bubble velocity. Back light shadowgraphy which utilizes a low intensity diffuse light source to illuminate the background was used to image bubbles. Nozzles were mounted in the test section which was designed such that the flow in this section has a two-dimensional profile. The results showed that the bubble size increases with an increase in GLR (gas to liquid flow rates ratio). Furthermore, the bubble formations and detached bubble size were strongly influenced by the nozzle shape and configuration.


2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
K. Ekambara ◽  
R. Sean Sanders ◽  
K. Nandakumar ◽  
J. H. Masliyah

Modelling of gas-liquid bubbly flows is achieved by coupling a population balance equation with the three-dimensional, two-fluid, hydrodynamic model. For gas-liquid bubbly flows, an average bubble number density transport equation has been incorporated in the CFD code CFX 5.7 to describe the temporal and spatial evolution of the gas bubbles population. The coalescence and breakage effects of the gas bubbles are modeled. The coalescence by the random collision driven by turbulence and wake entrainment is considered, while for bubble breakage, the impact of turbulent eddies is considered. Local spatial variations of the gas volume fraction, interfacial area concentration, Sauter mean bubble diameter, and liquid velocity are compared against experimental data in a horizontal pipe, covering a range of gas (0.25 to 1.34 m/s) and liquid (3.74 to 5.1 m/s) superficial velocities and average volume fractions (4% to 21%). The predicted local variations are in good agreement with the experimental measurements reported in the literature. Furthermore, the development of the flow pattern was examined at three different axial locations ofL/D= 25, 148, and 253. The first location is close to the entrance region where the flow is still developing, while the second and the third represent nearly fully developed bubbly flow patterns.


Author(s):  
Hideki Murakawa ◽  
Hiroshige Kikura ◽  
Masanori Aritomi ◽  
Michitsugu Mori

In order to clarify the microscopic flow structure, the ultrasonic Doppler method was applied to the measurement of two-phase bubbly flow in vertical pipe (i.d.50mm). Liquid flow structure might strongly be influenced by the characteristic of the injected bubbles, i.e. bubbles’ size and void fraction. In this study, a bubble generator was newly designed with the purpose to control the bubble size and void fraction, independent of liquid main-flow rate. The experiment was performed at z/d = 66 from the bubble generator. Liquid flow rates were of the Reynolds numbers ranging from Rem = 3700 to 6200. The gas flow rate was constant at JG = 0.00348(m/s) at the measurement position. By analyzing the bubbles’ picture, it was confirmed that bubble size distribution and average bubble size were almost constant if the liquid flow rate were changed. The ultrasonic Doppler method has the capability of measuring the instantaneous velocity profiles of both phases at the same time. By processing the data based on pattern recognition, the recorded data can be classified to several groups. Using this method, the authors have tried to measure the bubbly flow in rectangular channel. In the present study, the application of this method to bubbly flow in circular pipe was satisfactory to obtain the liquid velocity distribution in bubbly flow and surrounding bubbles. From these results, it was clarified that velocity profile in bubbly flow in circular pipe has a maximum value near the pipe wall. Furthermore, velocity profiles around the bubble are influenced by leading bubbles.


2006 ◽  
Author(s):  
Munenori Maekawa ◽  
Naoki Shimada ◽  
Kouji Kinoshita ◽  
Akira Sou ◽  
Akio Tomiyama

Numerical methods for predicting heterogeneous bubbly flows are indispensable for the design of a Fisher-Tropsh reactor for GTL (Gas To Liquid). It is necessary to take into account bubble size distribution determined by bubble coalescence and breakup for the accurate prediction of heterogeneous bubbly flows. Hence we implemented several bubble coalescence and breakup models into the (N+2) field model, which is a hybrid combination of an interface tracking method and a multi-fluid model. Void and bubble size distributions in an open rectangular bubble column were measured and compared with predicted ones. As a result, the following conclusions were obtained: (1) Void and bubble size distributions were not affected by inlet bubble sizes because the bubble size distribution reaches an equilibrium state at which the birth rate is equal to the death rate, and (2) the combination of Luo’s bubble breakup model and a coalescence model consisting of Prince & Blanch’s model and Wang’s wake entrainment model gave good predictions.


1985 ◽  
Vol 50 (3) ◽  
pp. 745-757 ◽  
Author(s):  
Andreas Zahn ◽  
Lothar Ebner ◽  
Kurt Winkler ◽  
Jan Kratochvíl ◽  
Jindřich Zahradník

The effect of two-phase flow regime on decisive hydrodynamic and mass transfer characteristics of horizontal-tube gas-liquid reactors (pressure drop, liquid holdup, kLaL) was determined in a cocurrent-flow experimental unit of the length 4.15 m and diameter 0.05 m with air-water system. An adjustable-height weir was installed in the separation chamber at the reactor outlet to simulate the effect of internal baffles on reactor hydrodynamics. Flow regime maps were developed in the whole range of experimental gas and liquid flow rates both for the weirless arrangement and for the weir height 0.05 m, the former being in good agreement with flow-pattern boundaries presented by Mandhane. In the whole range of experi-mental conditions pressure drop data could be well correlated as a function of gas and liquid flow rates by an empirical exponential-type relation with specific sets of coefficients obtained for individual flow regimes from experimental data. Good agreement was observed between values of pressure drop obtained for weirless arrangement and data calculated from the Lockhart-Martinelli correlation while the contribution of weir to the overall pressure drop was well described by a relation proposed for the pressure loss in closed-end tubes. In the region of negligible weir influence values of liquid holdup were again succesfully correlated by the Lockhart-Martinelli relation while the dependence of liquid holdup data on gas and liquid flow rates obtained under conditions of significant weir effect (i.e. at low flow rates of both phases) could be well described by an empirical exponential-type relation. Results of preliminary kLaL measurements confirmed the decisive effect of the rate of energy dissipation on the intensity of interfacial mass transfer in gas-liquid dispersions.


2012 ◽  
Vol 18 (3) ◽  
pp. 349-359
Author(s):  
Vijay Sodhi

The most of past studies in foaming trickle bed reactors aimed at the improvement of efficiency and operational parameters leads to high economic advantages. Conventionally most of the industries rely on frequently used gas continuous flow (GCF) where operational output is satisfactory but not yields efficiently as in pulsing flow (PF) and foaming pulsing flow (FPF). Hydrodynamic characteristics like regime transitions are significantly influenced by foaming nature of liquid as well as gas and liquid flow rates. This study?s aim was to demonstrate experimentally the effects of liquid flow rate, gas flow rates and liquid surface tension on regime transition. These parameters were analyzed for the air-aqueous Sodium Lauryl Sulphate and air-water systems. More than 240 experiments were done to obtain the transition boundary for trickle flow (GCF) to foaming pulsing flow (PF/FPF) by use excessive foaming 15-60 ppm surfactant compositions. The trickle to pulse flow transition appeared at lower gas and liquid flow rates with decrease in liquid surface tension. All experimental data had been collected and drawn in the form of four different transitional plots which are compared and drawn by using flow coordinates proposed by different researchers. A prominent decrease in dynamic liquid saturation was observed especially during regime transitional change. The reactor two phase pressure evident a sharp rise to verify the regime transition shift from GCF to PF/FPF. Present study reveals, the regime transition boundary significantly influenced by any change in hydrodynamic as well as physiochemical properties including surface tension.


2010 ◽  
Vol 64 (2) ◽  
Author(s):  
Paulina Pianko-Oprych ◽  
Zdzisław Jaworski

AbstractThe main purpose of the paper is to apply the large eddy simulations (LES) technique and to verify its use as a predicting tool for turbulent liquid-liquid flow in an SMX static mixer. LES modeling was carried out using the Smagorinsky-Lilly model of the turbulent subgrid viscosity for the Reynolds number of 5000 and 10000. The continuous phase was water and the dispersed phase was silicon oil. The investigation covers the effects of the density ratio between the phases. Three different cases of liquid densities were considered. The dispersed phase concentration distribution in the mixer cross-sections was compared with the corresponding time averaged results obtained formerly for the same configuration in a steady-state simulation using the standard RANS approach with the k-ɛ model. The dependency of the standard deviation of the dispersed phase concentration on the distance from the mixer inlet and the impact of the centrifugal force on the phase concentration distribution were investigated. The presented results for the SMX static mixer confirm conclusions of previous studies by Jaworski et al. (2006) obtained for a Kenics static mixer and show less a pronounced influence of the centrifugal force on the phase concentration distribution of the LES results in comparison to the RANS case.


Sign in / Sign up

Export Citation Format

Share Document