Atomistic insight into the inhibition mechanisms of suppressors of cytokine signaling on Janus kinase

2019 ◽  
Vol 21 (24) ◽  
pp. 12905-12915 ◽  
Author(s):  
Yaru Wei ◽  
Zhiyang Zhang ◽  
Nai She ◽  
Xin Chen ◽  
Yuan Zhao ◽  
...  

Suppressors of cytokine signaling (SOCS) act as negative feedback regulators of the Janus kinase/signal transducer (JAK–STAT) signaling pathway by inhibiting the activity of JAK kinase.


Endocrinology ◽  
2006 ◽  
Vol 147 (10) ◽  
pp. 4996-5005 ◽  
Author(s):  
Greg M. Anderson ◽  
Paulien Beijer ◽  
Angela S. Bang ◽  
Mark A. Fenwick ◽  
Stephen J. Bunn ◽  
...  

During late pregnancy and lactation, the tuberoinfundibular dopamine (TIDA) neurons that regulate prolactin secretion by negative feedback become less able to produce dopamine in response to prolactin, leading to hyperprolactinemia. Because prolactin-induced activation of dopamine synthesis in these neurons requires the Janus kinase/signal transducer and activator of transcription 5b (STAT5b) signaling pathway, we investigated whether prolactin-induced STAT5b signaling is reduced during lactation and whether induction of suppressors of cytokine signaling (SOCS) mRNAs occur at this time and in late pregnancy. During lactation, the ability of exogenous prolactin to induce STAT5 phosphorylation and STAT5b nuclear translocation was markedly reduced when compared with diestrous rats. In nonpregnant female rats, acute treatment with ovine prolactin markedly increased levels of SOCS-1 and -3 and cytokine-inducible SH2-containing protein mRNA in arcuate nucleus micropunches. On gestation d 22, SOCS-1 and SOCS-3 mRNA levels were 10-fold that on G20. SOCS-1 and -3 and cytokine-inducible SH2-containing protein mRNA levels were also elevated on lactation d 7. At these times, dopaminergic activity was decreased and the rats were hyperprolactinemic. The high levels of SOCS mRNA were prevented by bromocriptine pretreatment (gestation d 22) or pup removal (lactation d 7), which suppressed circulating prolactin to basal levels. These results demonstrate that around the end of pregnancy, prolactin loses the ability to activate STAT5b, associated with an increase in SOCS mRNAs. The loss of this stimulating pathway may underlie the reduced tuberoinfundibular dopamine neuron dopamine output and hyperprolactinemia that characterizes late pregnancy and lactation. The high maternal levels of SOCS mRNAs appear to be dependent on prolactin, presumably acting through an alternative signaling pathway to STAT5b.



2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Xiaoyi Hu ◽  
Jing li ◽  
Maorong Fu ◽  
Xia Zhao ◽  
Wei Wang

AbstractThe Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway was discovered more than a quarter-century ago. As a fulcrum of many vital cellular processes, the JAK/STAT pathway constitutes a rapid membrane-to-nucleus signaling module and induces the expression of various critical mediators of cancer and inflammation. Growing evidence suggests that dysregulation of the JAK/STAT pathway is associated with various cancers and autoimmune diseases. In this review, we discuss the current knowledge about the composition, activation, and regulation of the JAK/STAT pathway. Moreover, we highlight the role of the JAK/STAT pathway and its inhibitors in various diseases.



2021 ◽  
Vol 12 ◽  
Author(s):  
Yu-Lin Wu ◽  
Jin-Fen Chen ◽  
Lin-Yun Jiang ◽  
Xiao-Li Wu ◽  
Yu-Hong Liu ◽  
...  

Sonneratia apetala Buch-Ham., an exotic mangrove species with antidiabetic, antibacterial, and antioxidant capacities, mainly distributes in the southeast coastal areas in China. The present work investigated the protective effects of Sonneratia apetala leaves and branches extraction (SAL) on hyperuricemia (HUA) in mice. Potassium oxonate (PO) and hypoxanthine (HX) were used to establish the HUA model by challenge for consecutive 7 days. Results revealed that SAL inhibited the increases in kidney weight and index compared to the vehicle group. Meanwhile, SAL significantly decreased the levels of uric acid (UA), creatinine (CRE), and blood urea nitrogen (BUN) in serum. Additionally, SAL inhibited the activity of xanthine oxidase (XOD) in the liver. SAL ameliorated PO- and HX-induced histopathological changes. Moreover, it regulated oxidative stress markers including malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD) activity, and glutathione (GSH) content. Also, SAL inhibited the increases in renal levels of interleukin-6 (IL-6), interleukin-18 (IL-18), interleukin-1β (IL-1β), tumor necrosis factor (TNF-α), monocyte chemotactic protein 1 (MCP-1), and transforming growth factor-β (TGF-β). SAL remarkably reduced suppressor of cytokine signaling 3 (SOCS3), Janus kinase 2 (JAK2), and subsequent phosphorylation of signal transducer and activator of transcription 3 (STAT3) expression. In addition, SAL inhibited the activation of nuclear factor kappa-B (NF-κB) in the kidney. Furthermore, SAL protected against HUA by regulating renal UA transporters of organic anion transporter (OAT1), urate reabsorption transporter 1 (URAT1), and glucose transporter 9 (GLUT9). These findings suggested that SAL ameliorated HUA by inhibiting the production of uric acid and enhancing renal urate excretion, which are related to oxidative stress and inflammation, and the possible molecular mechanisms include its ability to inhibit the JAK/STAT signaling pathway. Thus, SAL might be developed into a promising agent for HUA treatments.



2019 ◽  
Vol 18 ◽  
pp. 153303381989680
Author(s):  
Di Wu ◽  
Wei Dong ◽  
Kun Fang ◽  
Mengchang Wang

Objective: This study aimed to investigate the effect of tetra-arsenic tetra-sulfide on treating multiple myeloma and its potential regulation on suppressor of cytokine signaling 1 methylation-mediated Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway. Methods: Tetra-arsenic tetra-sulfide with different concentrations were used to treat U266 cells, and cell viability was measured at 12, 24, and 48 hours with 0 μM tetra-arsenic tetra-sulfide treatment as control by Cell Counting Kit-8 assay. Suppressor of cytokine signaling 1 methylation and expression were determined by methylation-specific polymerase chain reaction, quantitative polymerase chain reaction, and Western blot, respectively, in U266 cells and normal plasma cells and in U266 cells treated by tetra-arsenic tetra-sulfide. Then, rescue experiments were performed by transfecting suppressor of cytokine signaling 1 small interfering RNA into tetra-arsenic tetra-sulfide-treated U266 cells. Besides, phosphor–Janus kinase 2, Janus kinase 2, phospho–signal transducer and activator of transcription 3, and signal transducer and activator of transcription 3 expressions were determined by Western blot. Results: Tetra-arsenic tetra-sulfide inhibited U266 cell viability efficiently in a dose- and time-dependent manner. Suppressor of cytokine signaling 1 methylation was higher while suppressor of cytokine signaling 1 expression was lower in U266 cells compared to normal plasma cells; when treated by tetra-arsenic tetra-sulfide, suppressor of cytokine signaling 1 methylation was decreased while suppressor of cytokine signaling 1 expression was increased in U266 cells, along with the reduced phospho–Janus kinase 2 and phospho–signal transducer and activator of transcription 3 expressions. Then, suppressor of cytokine signaling 1 small interfering RNA enhanced the cell viability and phospho–Janus kinase 2 as well as phospho–signal transducer and activator of transcription 3 expressions in both tetra-arsenic tetra-sulfide treatment-free and tetra-arsenic tetra-sulfide-treated U266 cells. Conclusion: Tetra-arsenic tetra-sulfide exhibits good killing effect on multiple myeloma cells via repressing suppressor of cytokine signaling 1 methylation and downstream Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway, which might serve as a potential treatment option for multiple myeloma.



2021 ◽  
Vol 12 ◽  
Author(s):  
Rong Wang ◽  
Xiaofeng Yang ◽  
Mingke Chang ◽  
Ziyang Xue ◽  
Weirong Wang ◽  
...  

Coronavirus disease 2019 (COVID-19) has caused a crisis to global public health since its outbreak at the end of 2019. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen of COVID-19, appears to efficiently evade the host immune responses, including interferon (IFN) signaling. Several SARS-CoV-2 viral proteins are believed to involve in the inhibition of IFN signaling. In this study, we discovered that ORF3a, an accessory protein of SARS-CoV-2, inhibited IFN-activated Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling via upregulating suppressor of cytokine signaling 1 (SOCS1), a negative regulator of cytokine signaling. ORF3a induced SOCS1 elevation in a dose- and time-dependent manner. RNAi-mediated silencing of SOCS1 efficiently abolished ORF3a-induced blockage of JAK/STAT signaling. Interestingly, we found that ORF3a also promoted the ubiquitin-proteasomal degradation of Janus kinase 2 (JAK2), an important kinase in IFN signaling. Silencing of SOCS1 by siRNA distinctly blocked ORF3a-induced JAK2 ubiquitination and degradation. These results demonstrate that ORF3a dampens IFN signaling via upregulating SOCS1, which suppressed STAT1 phosphorylation and accelerated JAK2 ubiquitin-proteasomal degradation. Furthermore, analysis of ORF3a deletion constructs showed that the middle domain of ORF3a (amino acids 70–130) was responsible for SOCS1 upregulation. These findings contribute to our understanding of the mechanism of SARS-CoV-2 antagonizing host antiviral response.



Endocrinology ◽  
2019 ◽  
Vol 161 (2) ◽  
Author(s):  
Paula Mota de Sá ◽  
Allison J Richard ◽  
Jacqueline M Stephens

Abstract The Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway has cell-specific functions. Suppressors of cytokine signaling (SOCS) proteins are negative-feedback regulators of JAK-STAT signaling. STAT5 plays a significant role in adipocyte development and function, and bromodomain and extraterminal (BET) proteins may be involved in STAT5 transcriptional activity. We treated 3T3-L1 adipocytes with the BET inhibitor JQ1 and observed that growth hormone (GH)-induced expression of 2 STAT5 target genes from the SOCS family, Socs3 and Cish, were inversely regulated (increased and decreased, respectively) by BET inhibition. Chromatin immunoprecipitation analyses revealed that changes in STAT5 binding did not correlate with gene expression changes. GH promoted the recruitment of the BET protein BRD2 to the Cish, but not Socs3, promoter. JQ1 treatment ablated this effect as well as the GH-induced binding of ribonucleic acid polymerase II (RNA Pol II) to the Cish transcription start site. BRD2 knockdown also suppressed GH induction of Cish, further supporting the role of BRD2 in Cish transcriptional activation. In contrast, JQ1 increased the binding of activated Pol II to the Socs3 coding region, suggesting enhanced messenger RNA (mRNA) elongation. Our finding that JQ1 transiently reduced the interaction between the positive transcription elongation factor (P-TEFb) and its inhibitor hexamethylene bis-acetamide inducible 1 (HEXIM1) is consistent with a previously described off-target effect of JQ1, whereby P-TEFb becomes more available to be recruited by genes that do not depend on BET proteins for activating transcription. These results demonstrate substantially different transcriptional regulation of Socs3 and Cish and suggest distinct roles in adipocytes for these 2 closely related proteins.



2001 ◽  
Vol 193 (2) ◽  
pp. 263-270 ◽  
Author(s):  
Yoshinori Kawazoe ◽  
Tetsuji Naka ◽  
Minoru Fujimoto ◽  
Hidetsugu Kohzaki ◽  
Yoshiaki Morita ◽  
...  

Signal transducer and activator of transcription (STAT)-induced STAT inhibitor 1 (SSI-1) is known to function as a negative feedback regulator of cytokine signaling, but it is unclear whether it is involved in other biological events. Here, we show that SSI-1 participates and plays an important role in the insulin signal transduction pathway. SSI-1–deficient mice showed a significantly low level of blood sugar. While the forced expression of SSI-1 reduced the phosphorylation level of insulin receptor substrate 1 (IRS-1), SSI-1 deficiency resulted in sustained phosphorylation of IRS-1 in response to insulin. Furthermore, SSI-1 achieves this inhibition both by binding directly to IRS-1 and by suppressing Janus kinases. These findings suggest that SSI-1 acts as a negative feedback factor also in the insulin signal transduction pathway through the suppression of IRS-1 phosphorylation.



2001 ◽  
Vol 281 (6) ◽  
pp. R2048-R2058 ◽  
Author(s):  
Abram M. Madiehe ◽  
Ling Lin ◽  
Christy White ◽  
H. Doug Braymer ◽  
George A. Bray ◽  
...  

Removal of adrenal steroids by adrenalectomy (ADX) slows or reverses the development of many forms of obesity in rodents, including those that are leptin or leptin receptor deficient. Obesity is associated with hyperleptinemia and leptin resistance. We hypothesized that glucocorticoids impair leptin receptor signaling and that removal thereof would activate the Janus kinase (JAK)-signal transducers and activators of transcription (STAT) signaling pathway. The inhibitory effect of leptin (2.5 μg icv) on food intake was enhanced in ADX rats. A combination of ribonuclease protection assays, RT-PCR, Western blots, and mobility shift assays was used to evaluate the leptin signaling pathway in whole hypothalami from sham-operated, ADX and corticosterone-replaced ADX (ADX-R) Sprague-Dawley rats that were treated acutely with either saline vehicle or leptin intracerebroventricularly. ADX increased the expression of leptin receptor mRNA, increased STAT-3 mRNA and protein levels, induced constitutive STAT-3 phosphorylation and DNA binding activity, and also reduced suppressor of cytokine signaling-3 (SOCS-3) mRNA and protein levels. ADX and leptin treatment increased STAT-3 phosphorylation, but with no concomitant increase in DNA binding activity. Leptin and ADX decreased NPY mRNA expression, but their combination did not further decrease NPY mRNA. Corticosterone supplementation of ADX rats partially reversed many of these effects. In conclusion, ADX through activation of STAT-3 and inhibition of SOCS-3 activates the JAK-STAT signaling pathway. These effects most probably explain the ability to prevent the development of obesity by removal of adrenal steroids.



2020 ◽  
Author(s):  
Saisai Wang ◽  
Yiting Ling ◽  
Yuanyuan Yao ◽  
Gang Zheng ◽  
Wenbin Chen

Abstract Background: Respiratory syncytial virus (RSV) is a major cause of acute lower respiratory tract infection in infants, children, immunocompromised adults, and elderly individuals. Currently, there are few therapeutic options available to prevent RSV infection. The present study aimed to investigate the effects of luteolin on RSV replication and the related mechanisms. Material and methods: We pretreated cells and mice with luteolin before infection with RSV, the virus titer, expressions of RSV-F, interferon (IFN)-stimulated genes (ISGs), and production of IFN-α and IFN-β were determined by plaque assay, RT-qPCR, and ELISA, respectively. The activation of Janus kinase (JAK)-signal transducer and activator of transcription 1 (STAT1) signaling pathway was detected by Western blotting and luciferase assay. Proteins which negatively regulates STAT1 was determined by Western blotting. Then cells were transfected with suppressor of cytokine signaling 1 (SOCS1) plasmid and virus replication and ISGs expression was determined. Luciferase reporter assay and Western blotting was performed to detect the relationship between SOCS1 and miR-155. Results: Luteolin inhibited RSV replication, as shown by the decreased viral titer and RSV-F mRNA expression both in vitro and in vivo. The antiviral activity of luteolin was attributed to the enhanced phosphorylation of STAT1, resulting in the increased production of ISGs. Further study showed that SOCS1 was downregulated by luteolin and SOCS1 is a direct target of microRNA-155 (miR-155). Inhibition of miR-155 rescued luteolin-mediated SOCS1 downregulation, whereas upregulation of miR-155 enhanced the inhibitory effect of luteolin. Conclusion: Luteolin inhibits RSV replication by regulating the miR-155/SOCS1/STAT1 signaling pathway.



Sign in / Sign up

Export Citation Format

Share Document