scholarly journals Bioinformatics analysis of tumor-educated platelet microRNAs in patients with hepatocellular carcinoma

2021 ◽  
Author(s):  
Beibei Zhu ◽  
Shanshan Gu ◽  
Xiaoting Wu ◽  
Wenyong He ◽  
Hongke Zhou

Background: Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies that seriously threaten global health. The primary reason for its grim prognosis is the lack of sensitive tools for early diagnosis. The purpose of this study was to apply bioinformatics analysis to explore tumor-educated platelet miRNA expression and its potential diagnostic utility in HCC. Methods:Twenty-five HCC patients and 25 healthy controls were included. RNA sequencing was utilized to screen microRNA alterations in platelets derived from HCC patients (n=5) and controls (n=5). Gene set enrichment analysis was performed to analyze the targeted mRNAs of differentially expressed miRNAs by using the Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes databases, aiming at main functions and pathways, respectively. We then verified the selected platelet microRNAs in another cohort by quantitative reverse transcription-polymerase chain reaction amplification (qRT-PCR). Results: A total of 250 differentially expressed microRNAs were identified, among which 111 were down-regulated and 139 were up-regulated. The functional enrichment analysis of differentially expressed miRNAs suggested that their target genes were involved primarily in pathways related to HCC. Expression levels of miR-495-3p and miR-1293 were further validated by qRT-PCR, which yielded results consistent with the sequencing analysis. The area under the receiver operating characteristic curve of miR-495-3p and miR-1293 as diagnostic tests for HCC were 0.76 and 0.78, respectively. Conclusion: Tumor-educated platelet microRNAs such as miR-495-3p and miR-1293 were differentially expressed in HCC patients, and may be involved in the pathophysiology of HCC.

2020 ◽  
Vol 34 ◽  
pp. 205873842097630
Author(s):  
Li Jiang ◽  
Mengmeng Zhang ◽  
Sixue Wang ◽  
Yuzhen Xiao ◽  
Jingni Wu ◽  
...  

The current study intended to explore the interaction of the long non-coding RNA (lncRNA), microRNA (miRNA), and messenger RNA (mRNA) under the background of competitive endogenous RNA (ceRNA) network in endometriosis (EMs). The differentially expressed miRNAs (DEmiRs), differentially expressed lncRNA (DELs), and differentially expressed genes (DEGs) between EMs ectopic (EC) and eutopic (EU) endometrium based on three RNA-sequencing datasets (GSE105765, GSE121406, and GSE105764) were identified, which were used for the construction of ceRNA network. Then, DEGs in the ceRNA network were performed with Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and protein-protein interaction (PPI) analysis. Besides, the DEmiRs in the ceRNA network were validated in GSE124010. And the target DELs and DEGs of verified DEmiRs were validated in GSE86534. The correlation of verified DEmiRs, DEGs, and DELs was explored. Moreover, gene set enrichment analysis (GSEA) was applied to investigate the function of verified DEmiRs, DEGs, and DELs. Overall, 1352 DEGs and 595 DELs from GSE105764, along with 27 overlapped DEmiRs between GSE105765 and GSE121406, were obtained. Subsequently, a ceRNA network, including 11 upregulated and 16 downregulated DEmiRs, 7 upregulated and 13 downregulated DELs, 48 upregulated and 46 downregulated DEGs, was constructed. The GO and KEGG pathway analysis showed that this ceRNA network probably was associated with inflammation-related pathways. Furthermore, hsa-miR-182-5p and its target DELs (LINC01018 and SMIM25) and DEGs (BNC2, CHL1, HMCN1, PRDM16) were successfully verified in the validation analysis. Besides, hsa-miR-182-5p was significantly negatively correlated with these target DELs and DEGs. The GSEA analysis implied that high expression of LINC01018, SMIM25, and CHL1, and low expression of hsa-miR-182-5p would activate inflammation-related pathways in endometriosis EU samples. LINC01018 and SMIM25 might sponge hsa-miR-182-5p to upregulate downstream genes such as CHL1 to promote the development of endometriosis.


Biomolecules ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 417
Author(s):  
Chuanxi Peng ◽  
Xing Wang ◽  
Tianyu Feng ◽  
Rui He ◽  
Mingcai Zhang ◽  
...  

MicroRNAs (miRNAs), the post-transcriptional gene regulators, are known to play an important role in plant development. The identification of differentially expressed miRNAs could better help us understand the post-transcriptional regulation that occurs during maize internode elongation. Accordingly, we compared the expression of MIRNAs between fixed internode and elongation internode samples and classified six differentially expressed MIRNAs as internode elongation-responsive miRNAs including zma-MIR160c, zma-MIR164b, zma-MIR164c, zma-MIR168a, zma-MIR396f, and zma-MIR398b, which target mRNAs supported by transcriptome sequencing. Functional enrichment analysis for predictive target genes showed that these miRNAs were involved in the development of internode elongation by regulating the genes respond to hormone signaling. To further reveal how miRNA affects internode elongation by affecting target genes, the miRNA–mRNA–PPI (protein and protein interaction) network was constructed to summarize the interaction of miRNAs and these target genes. Our results indicate that miRNAs regulate internode elongation in maize by targeting genes related to cell expansion, cell wall synthesis, transcription, and regulatory factors.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rong Deng ◽  
Xiaohan Cui ◽  
Yuxiang Dong ◽  
Yanqiu Tang ◽  
Xuewen Tao ◽  
...  

BackgroundCircular RNAs (circRNAs) are now under hot discussion as novel promising biomarkers for patients with hepatocellular carcinoma (HCC). The purpose of our study is to identify several competing endogenous RNA (ceRNA) networks related to the prognosis and progression of HCC and to further investigate the mechanism of their influence on tumor progression.MethodsFirst, we obtained gene expression data related to liver cancer from The Cancer Genome Atlas (TCGA) database (http://www.portal.gdc.cancer.gov/), including microRNA (miRNA) sequence, RNA sequence, and clinical information. A co-expression network was constructed through the Weighted Correlation Network Analysis (WGCNA) software package in R software. The differentially expressed messenger RNAs (DEmRNAs) in the key module were analyzed with the Database for Annotation Visualization and Integrated Discovery (DAVID) (https://david.ncifcrf.gov/summary.jsp) to perform functional enrichment analysis including Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). The data of miRNA expression and clinical information downloaded from TCGA were utilized for survival analysis to detach the prognostic value of the DEmiRNAs of the key module.ResultsThe 201 differentially expressed miRNAs (DEmiRNAs) and 3,783 DEmRNAs were preliminarily identified through differential expression analysis. The co-expression networks of DEmiRNAs and DEmRNAs were constructed with WGCNA. Further analysis confirmed four miRNAs in the most significant module (blue module) were associated with the overall survival (OS) of patients with liver cancer, including hsa-miR-92b-3p, hsa-miR-122-3p, hsa-miR-139-5p, and hsa-miR-7850-5p. DAVID was used for functional enrichment analysis of 286 co-expressed mRNAs. The GO analysis results showed that the top enriched GO terms were oxidation–reduction process, extracellular exosome, and iron ion binding. In KEGG pathway analysis, the top three enriched terms included metabolic pathways, fatty acid degradation, and valine, leucine, and isoleucine degradation. In addition, we intersected the miRNA–mRNA interaction prediction results with the differentially expressed and prognostic mRNAs. We found that hsa-miR-92b-3p can be related to CPEB3 and ACADL. By overlapping the data of predicted circRNAs by circBank and differentially expressed circRNAs of GSE94508, we screened has_circ_0077210 as the upstream regulatory molecule of hsa-miR-92b-3p. Hsa_circ_0077210/hsa-miR-92b-3p/cytoplasmic polyadenylation element binding protein-3 (CPEB3) and acyl-Coenzyme A dehydrogenase, long chain (ACADL) were validated in HCC tissue.ConclusionOur research provides a mechanistic elucidation of the unknown ceRNA regulatory network in HCC. Hsa_circ_0077210 might serve a momentous therapeutic role to restrain the occurrence and development of HCC.


Author(s):  
Yanxin Liu ◽  
Zhang Feng ◽  
Huaxia Chen

Background: As a tumor suppressor or oncogenic gene, abnormal expression of RUNX family transcription factor 3 (RUNX3) has been reported in various cancers. Introduction: This study aimed to investigate the role of RUNX3 in melanoma. Methods: The expression level of RUNX3 in melanoma tissues was analyzed by immunohistochemistry and the Oncomine database. Based on microarray datasets GSE3189 and GSE7553, differentially expressed genes (DEGs) in melanoma samples were screened, followed by functional enrichment analysis. Gene Set Enrichment Analysis (GSEA) was performed for RUNX3. DEGs that co-expressed with RUNX3 were analyzed, and the transcription factors (TFs) of RUNX3 and its co-expressed genes were predicted. The protein-protein interactions (PPIs) for RUNX3 were analyzed utilizing the GeneMANIA database. MicroRNAs (miRNAs) that could target RUNX3 expression, were predicted. Results : RUNX3 expression was significantly up-regulated in melanoma tissues. GSEA showed that RUNX3 expression was positively correlated with melanogenesis and melanoma pathways. Eleven DEGs showed significant co-expression with RUNX3 in melanoma, for example, TLE4 was negatively co-expressed with RUNX3. RUNX3 was identified as a TF that regulated the expression of both itself and its co-expressed genes. PPI analysis showed that 20 protein-encoding genes interacted with RUNX3, among which 9 genes were differentially expressed in melanoma, such as CBFB and SMAD3. These genes were significantly enriched in transcriptional regulation by RUNX3, RUNX3 regulates BCL2L11 (BIM) transcription, regulation of I-kappaB kinase/NF-kappaB signaling, and signaling by NOTCH. A total of 31 miRNAs could target RUNX3, such as miR-326, miR-330-5p, and miR-373-3p. Conclusion: RUNX3 expression was up-regulated in melanoma and was implicated in the development of melanoma.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Hao Zhang ◽  
Xi Chen ◽  
Yufeng Yuan

Purpose. To identify pivotal differentially expressed miRNAs and genes and construct their regulatory network in hepatocellular carcinoma. Methods. mRNA (GSE101728) and microRNA (GSE108724) microarray datasets were obtained from the NCBI Gene Expression Omnibus (GEO) database. Then, we identified the differentially expressed miRNAs and mRNAs. Sequentially, transcription factor enrichment and gene ontology (GO) enrichment analysis for miRNA were performed. Target genes of these differential miRNAs were obtained using packages in R language ( R package multiMiR). After that, downregulated miRNAs were matched with target mRNAs which were upregulated, while upregulated miRNAs were paired with downregulated target mRNA using scripts written in Perl. An miRNA-mRNA network was constructed and visualized in Cytoscape software. For miRNAs in the network, survival analysis was performed. And for genes in the network, we did gene ontology (GO) and KEGG pathway enrichment analysis. Results. A total of 35 miRNAs and 295 mRNAs were involved in the network. These differential genes were enriched in positive regulation of cell-cell adhesion, positive regulation of leukocyte cell-cell adhesion, and so on. Eight differentially expressed miRNAs were found to be associated with the OS of patients with HCC. Among which, miR-425 and miR-324 were upregulated while the other six, including miR-99a, miR-100, miR-125b, miR-145, miR-150, and miR-338, were downregulated. Conclusion. In conclusion, these results can provide a potential research direction for further studies about the mechanisms of how miRNA affects malignant behavior in hepatocellular carcinoma.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Siying He ◽  
Hui Sun ◽  
Yifang Huang ◽  
Shiqi Dong ◽  
Chen Qiao ◽  
...  

Purpose. MiRNAs have been widely analyzed in the occurrence and development of many diseases, including pterygium. This study aimed to identify the key genes and miRNAs in pterygium and to explore the underlying molecular mechanisms. Methods. MiRNA expression was initially extracted and pooled by published literature. Microarray data about differentially expressed genes was downloaded from Gene Expression Omnibus (GEO) database and analyzed with the R programming language. Functional and pathway enrichment analyses were performed using the database for Annotation, Visualization and Integrated Discovery (DAVID). The protein-protein interaction network was constructed with the STRING database. The associations between chemicals, differentially expressed miRNAs, and differentially expressed genes were predicted using the online resource. All the networks were constructed using Cytoscape. Results. We found that 35 miRNAs and 301 genes were significantly differentially expressed. Functional enrichment analysis showed that upregulated genes were significantly enriched in extracellular matrix (ECM) organization, while downregulated genes were mainly involved in cell death and apoptotic process. Finally, we concluded the chemical-gene affected network, miRNA-mRNA interacted networks, and significant pathway network. Conclusion. We identified lists of differentially expressed miRNAs and genes and their possible interaction in pterygium. The networks indicated that ECM breakdown and EMT might be two major pathophysiological mechanisms and showed the potential significance of PI3K-Akt signalling pathway. MiR-29b-3p and collagen family (COL4A1 and COL3A1) might be new treatment target in pterygium.


Author(s):  
Maria Vulf ◽  
Daria Shunkina ◽  
Aleksandra Komar ◽  
Maria Bograya ◽  
Pavel Zatolokin ◽  
...  

Non-alcoholic fatty liver disease (NAFLD) is emerging as one of the most common chronic liver diseases worldwide, affecting 25% of the world population. In recent years, there has been increasing evidence for the involvement of microRNAs in the epigenetic regulation of genes taking part in the development of steatosis and steatohepatitis—two main stages of NAFLD pathogenesis. In the present study, miRNA profiles were studied in groups of patients with steatosis and steatohepatitis to compare the characteristics of RNA-dependent epigenetic regulation of the stages of NAFLD development. According to the results of miRNA screening, 23 miRNAs were differentially expressed serum in a group of patients with steatohepatitis and 2 in a group of patients with steatosis. MiR-195-5p and miR-16-5p are common differentially expressed miRNAs for both steatosis and steatohepatitis. We analyzed the obtained results: the search for target genes for the differentially expressed miRNAs in our study and the subsequent gene set enrichment analysis performed on KEGG and REACTOME databases revealed which metabolic pathways undergo changes in RNA-dependent epigenetic regulation in steatosis and steatohepatitis. New findings within the framework of this study are the dysregulation of neurohumoral pathways in the pathogenesis of NAFLD as an object of changes in RNA-dependent epigenetic regulation. The miRNAs differentially expressed in our study were found to target 7% of genes in the classic pathogenesis of NAFLD in the group of patients with steatosis and 50% in the group of patients with steatohepatitis. The effects of these microRNAs on genes for the pathogenesis of NAFLD were analyzed in detail. MiR-374a-5p, miR-1-3p and miR-23a-3p do not target genes directly involved in the pathogenesis of NAFLD. The differentially expressed miRNAs found in this study target genes largely responsible for mitochondrial function. The role of miR-423-5p, miR-143-5p and miR-200c-3 in regulating apoptotic processes in the liver and hepatocarcinogenesis is of interest for future experimental studies. These miR-374a, miR-143, miR-1, miR-23a, and miR-423 have potential for steatohepatitis diagnosis and are poorly studied in the context of NAFLD. Thus, this work opens up prospects for further studies of microRNAs as diagnostic and therapeutic biomarkers for NAFLD.


2020 ◽  
Author(s):  
Ze-bing Song ◽  
Guo-pei Zhang ◽  
shaoqiang li

Abstract Background: Hepatocellular carcinoma (HCC) is one of the most common malignant tumor in the world which prognosis is poor. Therefore, a precise biomarker is needed to guide treatment and improve prognosis. More and more studies have shown that lncRNAs and immune response are closely related to the prognosis of hepatocellular carcinoma. The aim of this study was to establish a prognostic signature based on immune related lncRNAs for HCC.Methods: Univariate cox regression analysis was performed to identify immune related lncRNAs, which had negative correlation with overall survival (OS) of 370 HCC patients from The Cancer Genome Atlas (TCGA). A prognostic signature based on OS related lncRNAs was identified by using multivariate cox regression analysis. Gene set enrichment analysis (GSEA) and a competing endogenous RNA (ceRNA) network were performed to clarify the potential mechanism of lncRNAs included in prognostic signature. Results: A prognostic signature based on OS related lncRNAs (AC145207.5, AL365203.2, AC009779.2, ZFPM2-AS1, PCAT6, LINC00942) showed moderately in prognosis prediction, and related with pathologic stage (Stage I&II VS Stage III&IV), distant metastasis status (M0 VS M1) and tumor stage (T1-2 VS T3-4). CeRNA network constructed 15 aixs among differentially expressed immune related genes, lncRNAs included in prognostic signature and differentially expressed miRNA. GSEA indicated that these lncRNAs were involved in cancer-related pathways. Conclusion: We constructed a prognostic signature based on immune related lncRNAs which can predict prognosis and guide therapies for HCC.


2021 ◽  
Author(s):  
ligong lu ◽  
Shaoqing Liu ◽  
Shengni Hua ◽  
Zhenlin Zhang ◽  
Meixiao Zhan ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is the most common subtype of liver cancer, and the systematic exploration of its prognostic indicators is urgently needed. In this study, we obtained 12 IRGs for the construction of a risk score prediction model in HCC by bioinformatics analysis. Methods Differentially expressed genes were screened using the R software edgeR package. Functional enrichment analysis was performed through gene ontology analyses as well as the Kyoto Encyclopedia of Genes and Genomes pathway analysis. Single factor and multi-factor Cox analysis were employed for survival analysis. We used the Timer software to examine the correlation between risk score and tumor-infiltrating immune cells. Results We identified 3,215 up-regulated and 1,044 down-regulated genes in HCC tissues based on a cohort from The Cancer Genome Atlas (TCGA). Differentially expressed immune-related genes (IRGs) and survival-associated IRGs were further identified. We also integrated multivariate Cox regression analyses to obtain 12 IRGs for the construction of a risk score prediction model, whose performance was verified using the Kaplan-Meier survival and receiver operating characteristic curve analyses. Our findings suggest that the risk score was associated with clinical characteristics and the infiltration of immune cells in HCC patients. Conclusions We obtained a risk score prediction model of 12 IRGs in HCC by bioinformatics analysis and confirmed its performance.


2021 ◽  
Author(s):  
Qian Yang ◽  
Shulei He ◽  
Lu Huang ◽  
Ci Shao ◽  
Tiejian Nie ◽  
...  

Abstract BackgroundBlood-based test for disease progression and early diagnosis of Parkinson’s disease (PD) is a long awaited but unsolved key problem in the clinic. The profiles of microRNAs (miRNAs) are regarded as potential diagnostic biomarkers in human diseases whereas the miRNAs in the periphery are susceptible to the influence of various components. MiRNAs enriched in serum exosomes have revealed disease-specific advantages for the diagnosis due to their high abundance, stability and resistant to degradation. This study aimed to screen differentially expressed exosomal miRNAs between healthy controls and PD patients to aid in diagnosis. MethodsA total of 103 healthy controls and diagnosed PD patients at different Hoehn and Yahr (H&Y) stages in Tangdu Hospital were included. In total, 185 differentially expressed miRNAs were obtained through miRNA sequencing of serum exosomes as well as edgeR and t-test analyses. Subsequently, the weighted gene co-expression network analysis (WGCNA) was utilized to identify the commonly expressed miRNAs in all stages of PD by constructing connections between modules and specifically expressed miRNAs in each stage of PD by functional enrichment analysis. The obtained miRNAs were further validated by quantitative real-time polymerase chain reaction (qRT-PCR) with peripheral blood exosomes from 30 more participants. ResultsUsing WGCNA, it was found that 4 miRNAs were commonly associated with all the stages of PD and 13 miRNAs were specifically associated with different stages of PD. Among the 17 miRNAs, 2 were commonly expressed in all the stages of PD and 5 were specifically expressed in different stages of PD via qRT-PCR; 5 were also specifically expressed in different stages of PD by WGCNA, but validation by qRT-PCR showed inconsistent results; the remaining 5 miRNAs did not exhibit significant differences by qRT-PCR. ConclusionsThis study revealed that the 7 serum exosomal miRNAs (hsa-miR-374a-5p, hsa-miR-374b-5p, hsa-miR-199a-3p, hsa-miR-195-5p, hsa-miR-28-5p, hsa-miR-22-5p and hsa-miR-151a-5p) we screened out may potentially be used as biomarkers for progression and early grading diagnosis of PD in the population.


Sign in / Sign up

Export Citation Format

Share Document