Regulation of the dual-function transcription factor Sp3 by SUMO

2007 ◽  
Vol 35 (6) ◽  
pp. 1393-1396 ◽  
Author(s):  
A. Valin ◽  
G. Gill

In eukaryotes, gene expression is controlled by a relatively small number of regulators. Post-translational modifications dramatically increase the functional possibilities of those regulators. Modification of many transcription factors and cofactors by SUMO (small ubiquitin-related modifier) correlates, in most cases, with inhibition of transcription. Recent studies suggest a model whereby SUMO conjugation to transcription factors promotes the recruitment of co-repressors through direct protein–protein interaction with the SUMO protein. HDACs (histone deacetylases) are important, but not exclusive, effectors of SUMO-mediated repression. Sp3 (specificity protein 3), a zinc-finger DNA-binding domain transcription factor, has the ability to both activate and repress transcription in a context-dependent manner. SUMOylation regulates the dual nature of Sp3 function. Current data suggest that Sp3 represses transcription in a SUMO-dependent manner but independent of HDACs. Recent studies to identify additional co-repressors associated with SUMO and further investigate regulated activity of Sp3 are providing a deeper understanding of SUMO-dependent mechanisms of transcriptional regulation.

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254447
Author(s):  
Marcos Francia ◽  
Martin Stortz ◽  
Camila Vazquez Echegaray ◽  
Camila Oses ◽  
Paula Verneri ◽  
...  

Akt/PKB is a kinase involved in the regulation of a wide variety of cell processes. Its activity is modulated by diverse post-translational modifications (PTMs). Particularly, conjugation of the small ubiquitin-related modifier (SUMO) to this kinase impacts on multiple cellular functions, such as proliferation and splicing. In embryonic stem (ES) cells, this kinase is key for pluripotency maintenance. Among other functions, Akt is known to promote the expression of Nanog, a central pluripotency transcription factor (TF). However, the relevance of this specific PTM of Akt has not been previously analyzed in this context. In this work, we study the effect of Akt1 variants with differential SUMOylation susceptibility on the expression of Nanog. Our results demonstrate that both, the Akt1 capability of being modified by SUMO conjugation and a functional SUMO conjugase activity are required to induce Nanog gene expression. Likewise, we found that the common oncogenic E17K Akt1 mutant affected Nanog expression in ES cells also in a SUMOylatability dependent manner. Interestingly, this outcome takes places in ES cells but not in a non-pluripotent heterologous system, suggesting the presence of a crucial factor for this induction in ES cells. Remarkably, the two major candidate factors to mediate this induction, GSK3-β and Tbx3, are non-essential players of this effect, suggesting a complex mechanism probably involving non-canonical pathways. Furthermore, we found that Akt1 subcellular distribution does not depend on its SUMOylatability, indicating that Akt localization has no influence on the effect on Nanog, and that besides the membrane localization of E17K Akt mutant, SUMOylation is also required for its hyperactivity. Our results highlight the impact of SUMO conjugation in the function of a kinase relevant for a plethora of cellular processes, including the control of a key pluripotency TF.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Joachim Altschmied ◽  
Nicole Büchner ◽  
Sascha Jakob ◽  
Sabrina Farrokh ◽  
Christine Goy ◽  
...  

Grainyhead-like 3 (GRHL3) is a member of the evolutionary conserved Grainyhead family of transcription factors. In humans, three isoforms are derived from differential first exon usage and alternative splicing, which differ only in their N-terminus. Isoform 2, the only variant also present in mouse, is required for endothelial cell (EC) migration and protects against apoptosis. The functions of the human specific isoforms 1 and 3, which are derived from an alternatively spliced pre-mRNA, have not yet been investigated, although all three isoforms are expressed in EC. Therefore, we have assessed their effects on EC migration and apoptosis. Overexpression of the two proteins had opposite effects on EC migration, with isoform 1 acting pro-migratory. This protein also protected EC against apoptosis in an eNOS-dependent manner, whereas isoform 3 had no effect. These opposing outcomes with respect to apoptosis EC were corroborated by isoform-specific knockdowns. With reporter assays using a GRHL3-specific luciferase reporter we demonstrated that both are active transcription factors. Microarray analyses revealed that they induce divergent target gene sets in EC. Two validated targets, Akt2 and Mxi1, which are upregulated by isoform1, are regulators of Akt1-, and thus eNOS-phosphorylation and apoptosis, which could explain the effects of this protein on these processes. In vivo, overexpression of isoform 3 in zebrafish embryos resulted in increased lethality and severe deformations, while isoform 1 had no deleterious effect. In conclusion, our data demonstrate that the splice variant derived isoforms 1 and 3 of the human transcription factor GRHL3 induce opposing effects in primary human endothelial cells and in a whole animal model, most likely through the induction of different target genes.


1992 ◽  
Vol 12 (11) ◽  
pp. 4960-4969
Author(s):  
E Kutoh ◽  
P E Strömstedt ◽  
L Poellinger

The ubiquitous and constitutive octamer transcription factor OTF-1 (Oct 1) is the target of positive regulation by the potent herpes simplex virus trans-activator VP16, which forms a complex with the homeodomain of OTF-1. Here we present evidence that the glucocorticoid receptor can negatively regulate OTF-1 function by a mechanism that is independent of DNA binding. In vivo-expressed glucocorticoid receptor inhibited in a hormone-dependent manner activation of a minimal promoter construct carrying a functional octamer site. Moreover, expression of the receptor in vivo resulted in hormone-dependent repression of OTF-1-dependent DNA-binding activity in nuclear extract. In vitro, the DNA-binding activity of partially purified OTF-1 was repressed following incubation with purified glucocorticoid receptor. Cross-linking and immunoprecipitation experiments indicated that the functional interference may be due to a strong association between these two proteins in solution. Finally, preliminary evidence indicates that the homeo subdomain of OTF-1 that directs formation of a complex with VP16 may also be critical for interaction with the glucocorticoid receptor. Thus, OTF-1 is a target for both positive and negative regulation by protein-protein interaction. Moreover, the functional interference between OTF-1 and the glucocorticoid receptor represents a novel regulatory mechanism in the cross-coupling of signal transduction pathways of nuclear receptors and constitutive transcription factors.


2020 ◽  
Vol 21 (22) ◽  
pp. 8460
Author(s):  
Min Young Kim ◽  
Bowen Yan ◽  
Suming Huang ◽  
Yi Qiu

Histone deacetylases (HDACs) play important roles in transcriptional regulation in eukaryotic cells. Class I deacetylase HDAC1/2 often associates with repressor complexes, such as Sin3 (Switch Independent 3), NuRD (Nucleosome remodeling and deacetylase) and CoREST (Corepressor of RE1 silencing transcription factor) complexes. It has been shown that HDAC1 interacts with and modulates all essential transcription factors for erythropoiesis. During erythropoiesis, histone deacetylase activity is dramatically reduced. Consistently, inhibition of HDAC activity promotes erythroid differentiation. The reduction of HDAC activity not only results in the activation of transcription activators such as GATA-1 (GATA-binding factor 1), TAL1 (TAL BHLH Transcription Factor 1) and KLF1 (Krüpple-like factor 1), but also represses transcription repressors such as PU.1 (Putative oncogene Spi-1). The reduction of histone deacetylase activity is mainly through HDAC1 acetylation that attenuates HDAC1 activity and trans-repress HDAC2 activity through dimerization with HDAC1. Therefore, the acetylation of HDAC1 can convert the corepressor complex to an activator complex for gene activation. HDAC1 also can deacetylate non-histone proteins that play a role on erythropoiesis, therefore adds another layer of gene regulation through HDAC1. Clinically, it has been shown HDACi can reactivate fetal globin in adult erythroid cells. This review will cover the up to date research on the role of HDAC1 in modulating key transcription factors for erythropoiesis and its clinical relevance.


Author(s):  
Dipan Roy ◽  
Ari Sadanandom

AbstractAcross all species, transcription factors (TFs) are the most frequent targets of SUMOylation. The effect of SUMO conjugation on the functions of transcription factors has been extensively studied in animal systems, with over 200 transcription factors being documented to be modulated by SUMOylation. This has resulted in the establishment of a number of paradigms that seek to explain the mechanisms by which SUMO regulates transcription factor functions. For instance, SUMO has been shown to modulate TF DNA binding activity; regulate both localization as well as the abundance of TFs and also influence the association of TFs with chromatin. With transcription factors being implicated as master regulators of the cellular signalling pathways that maintain phenotypic plasticity in all organisms, in this review, we will discuss how SUMO mediated regulation of transcription factor activity facilitates molecular pathways to mount an appropriate and coherent biological response to environmental cues.


2007 ◽  
Vol 293 (6) ◽  
pp. L1395-L1405 ◽  
Author(s):  
Valérie Besnard ◽  
Yan Xu ◽  
Jeffrey A. Whitsett

The ATP-binding cassette (ABC) ABCA3 gene encodes a lipid transporter critical for surfactant function at birth. To identify transcription factors that regulate ABCA3 expression in the lung, we identified by bioinformatic and functional analyses two positive regulatory regions, located between bp −2591 and −1102 and bp −1102 and +11, relative to the exon 1 of the Abca3 gene promoter. The distal cassette contains consensus sequences predicting binding to lung transcription factors including FOXA2, CCAAT/enhancer binding protein-α (C/EBPα), GATA-6, thyroid transcription factor-1 (TTF-1 or Nkx2.1), and nuclear factor of activated T cells-c3 (NFATc3). The activity of the distal region from bp −2591 to −1102 was assessed in HeLa and mouse lung epithelial MLE-15 cells. FOXA2, C/EBPα, GATA-6, TTF-1, and NFATc3 increased the activity of the Abca3 luciferase construct in a dose-dependent manner. The distal cassette conferred activation by FOXA2, C/EBPα, GATA-6, TTF-1, and NFATc3 in a position- and orientation-independent manner, serving as an enhancer-like regulatory element. The proximal Abca3 promoter region contained multiple sterol responsive element (SRE) binding sites. SRE binding protein (SREBP)-1c significantly increased the activity of the Abca3 luciferase construct in a dose-dependent manner, whereas SREBP-1a and SREBP-2 did not influence the Abca3 promoter activity. Chromatin immunoprecipitation (ChIP) analyses demonstrated the binding of SREBP-1c, C/EBPα, and TTF-1 to their respective regulatory elements. Conditional deletion of SREBP cleavage-activating protein ( Scap) in respiratory epithelial cells in the mouse lung in vivo inhibited the expression of SREBPs in concert with Abca3. Abca3 gene expression is mediated by discrete cis-acting cassettes that mediate pulmonary cell- and lipid-sensitive pathways regulating surfactant homeostasis.


2018 ◽  
Vol 115 (8) ◽  
pp. E1829-E1838 ◽  
Author(s):  
Caia D. S. Duncan ◽  
María Rodríguez-López ◽  
Phil Ruis ◽  
Jürg Bähler ◽  
Juan Mata

Eukaryotes respond to amino acid starvation by enhancing the translation of mRNAs encoding b-ZIP family transcription factors (GCN4 in Saccharomyces cerevisiae and ATF4 in mammals), which launch transcriptional programs to counter this stress. This pathway involves phosphorylation of the eIF2 translation factor by Gcn2-protein kinases and is regulated by upstream ORFs (uORFs) in the GCN4/ATF4 5′ leaders. Here, we present evidence that the transcription factors that mediate this response are not evolutionarily conserved. Although cells of the fission yeast Schizosaccharomyces pombe respond transcriptionally to amino acid starvation, they lack clear Gcn4 and Atf4 orthologs. We used ribosome profiling to identify mediators of this response in S. pombe, looking for transcription factors that behave like GCN4. We discovered a transcription factor (Fil1) translationally induced by amino acid starvation in a 5′ leader and Gcn2-dependent manner. Like Gcn4, Fil1 is required for the transcriptional response to amino acid starvation, and Gcn4 and Fil1 regulate similar genes. Despite their similarities in regulation, function, and targets, Fil1 and Gcn4 belong to different transcription factor families (GATA and b-ZIP, respectively). Thus, the same functions are performed by nonorthologous proteins under similar regulation. These results highlight the plasticity of transcriptional networks, which maintain conserved principles with nonconserved regulators.


2018 ◽  
Author(s):  
Yoav Lubelsky ◽  
Yosef Shaul

SummeryRFX proteins are a family of conserved DNA binding proteins involved in various, essential cellular and developmental processes. RFX1 is a ubiquitously expressed, dual-activity transcription factor capable of both activation and repression of target genes.The exact mechanism by which RFX1 regulates its target is not known yet. In this work, we show that the C-terminal repression domain of RFX1 interacts with the Serine/Threonine protein phosphatase PP1c, and that interaction with RFX1 can target PP1c to specific sites in the genome. Given that PP1c was shown to de-phosphorylate several transcription factors, as well as the regulatory C-terminal domain of RNA Polymerase II the recruitment of PP1c to promoters may be a mechanism by which RFX1 regulates the target genes.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5545-5545 ◽  
Author(s):  
Elizabeth D. Lightbody ◽  
Mairead Reidy ◽  
Michael P. Agius ◽  
Salma El-Behaedi ◽  
Romanos Sklavenitis-Pistofidis ◽  
...  

Introduction Multiple myeloma (MM) is an incurable hematological malignancy characterized by the clonal expansion of malignant plasma cells (PCs) within the bone marrow. MM is genetically heterogeneous with aberrations including hyperdiploidy and chromosomal translocations commonly involving the immunoglobulin heavy chain (IgH) region. Many transcription factors can revoke their normal processes and act as oncogenes when they are brought under the control of IgH regulatory regions by a chromosomal translocation. Interferon Regulatory Factor 4 (IRF4) is a transcription factor which controls plasma cell differentiation and possesses many regulatory roles including interferon response, immune cell response, cell proliferation, apoptosis, and metabolism. IRF4 has proven to be a genetic vulnerability in MM as silencing studies in a large panel of MM cell lines with various genetic etiologies have demonstrated IRF4 expression is essential for MM cell survival. Standard of care treatments that indirectly suppress IRF4 including Proteasome inhibitors and Cereblon modulators have provided the greatest clinical outcomes for patients. However, like many other transcription factors, IRF4 has been notoriously difficult to target due to the protein's lack of amenable binding pockets favored for small molecule inhibitor development. Thus, identifying novel mechanisms and compounds to target IRF4 (directly or indirectly) can provide significant clinical impacts for MM patients. Methods To discover compounds capable of depleting IRF4 levels, we performed a high-throughput drug screen utilizing the Selleckchem Drug Repurposing Library on a widely accepted IRF4-dependent cell line. This library consists of over 2,000 diverse compounds that have well validated mechanisms of actions and have additionally passed clinical phase 1 safety trials for accelerated translational use. MM.1S cells were treated for 48 hours in duplicate (n = 2) with 10 μM compound. Following treatment, the cells were fixed, permeabilized, and stained for viability and IRF4 levels. IRF4 expression and viability was acquired by using flow cytometry, with high dose lenalidomide and shRNA for IRF4 as positive controls. Compounds that reduced IRF4 levels and cell viability across both experimental runs were ranked and selected with a cutoff of 40% as promising candidate compounds for further validation. Results Our drug screen results revealed 20 compounds (undisclosed) which met our cutoff of a decrease of IRF4 levels by 40% or greater. Ten hits were selected as having greater or equal to IRF4 depleting properties of lenalidomide and moved forward to be validated by western blot. Six drugs were shown to deplete IRF4 by western blot in MM.1S and KMS-18 cells at 10 μM doses. Interestingly, 4 out of the 10 hits all belong to same compound class that selectively bind to the same target receptor (undisclosed). Additional experiments confirmed these class of compounds deplete IRF4 levels in a dose dependent manner (EC50 = 1 μM). A time course revealed that IRF4 levels decrease shortly after the binding of these drugs to their widely reported target receptor, suggesting this is a selective drug/target receptor-mediated mechanism directly altering levels of IRF4. In vitro studies demonstrated the ability to both halt cell growth and decrease the viability of a panel of 8 MM cell lines, with IC50's ranging from 1.6 - 8.5 μM. Synergy studies with Lenolidomide and Bortezomib are underway to determine any synergistic combinations with standard of care therapies. In vivo studies and RNA-sequencing are also currently underway to determine the impact of these compounds on MM tumor growth and overall survival, as well as better define the mechanism of action driving this novel class of IRF4 targeting compounds. Conclusions Despite knowledge that IRF4 is a biologically potent target in MM there have been no extensive studies highlighting drugs capable of targeting this transcription factor and its oncogenic signaling network. This screen has revealed novel compounds, some of which are clinically used, that are capable of depleting a highly dependent gene in MM. Notably, these compounds are able to deplete IRF4 in a novel mechanism which is capable of affecting survival of MM cell lines that represent the heterogeneity of myeloma, and thus holds potential for significant clinical impact. Disclosures Ghobrial: Amgen: Consultancy; Janssen: Consultancy; Celgene: Consultancy; Takeda: Consultancy; Sanofi: Consultancy; BMS: Consultancy.


2012 ◽  
Vol 26 (1) ◽  
pp. 2-13 ◽  
Author(s):  
Melissa J. Brayman ◽  
Patricia A. Pepa ◽  
Sara E. Berdy ◽  
Pamela L. Mellon

Abstract Alterations in androgen levels lead to reproductive defects in both males and females, including hypogonadotropic hypogonadism, anovulation, and infertility. Androgens have been shown to down-regulate GnRH mRNA levels through an androgen receptor (AR)-dependent mechanism. Here, we investigate how androgen regulates expression from the GnRH regulatory region in the GT1-7 cell line, a model of GnRH neurons. A synthetic androgen, R1881, repressed transcription from the GnRH promoter (GnRH-P) in an AR-dependent manner, and liganded AR associated with the chromatin at the GnRH-P in live GT1-7 cells. The three known octamer-binding transcription factor-1 (Oct-1) binding sites in GnRH-P were required for AR-mediated repression, although other sequences were also involved. Although a multimer of the consensus Oct-1 binding site was not repressed, a multimer of the cluster of Oct-1, Pre-B cell leukemia transcription factor (Pbx)/Prep, and NK2 homeobox 1 (Nkx2.1) binding sites, found at −106/−91 in GnRH-P, was sufficient for repression. In fact, overexpression of any of these factors disrupted the androgen response, indicating that a balance of factors in this tripartite complex is required for AR repression. AR bound to this region in EMSA, indicating a direct interaction of AR with DNA or with other transcription factors bound to GnRH-P at this sequence. Collectively, our data demonstrate that GnRH transcription is repressed by AR via multiple sequences in GnRH-P, including three Oct-1 binding sites, and that this repression requires the complex interaction of several transcription factors.


Sign in / Sign up

Export Citation Format

Share Document