The nucleolus-like and precursor bodies of mammalian oocytes and embryos and their possible role in post-fertilization centromere remodelling

2020 ◽  
Vol 48 (2) ◽  
pp. 581-593
Author(s):  
Helena Fulka ◽  
Jana Rychtarova ◽  
Pasqualino Loi

In nearly all somatic cells, the ribosome biosynthesis is a key activity. The same is true also for mammalian oocytes and early embryos. This activity is intimately linked to the most prominent nuclear organelles — the nucleoli. Interestingly, during a short period around fertilization, the nucleoli in oocytes and embryos transform into ribosome-biosynthesis-inactive structures termed nucleolus-like or nucleolus precursor bodies (NPBs). For decades, researchers considered these structures to be passive repositories of nucleolar proteins used by the developing embryo to rebuild fully functional, ribosome-synthesis competent nucleoli when required. Recent evidence, however, indicates that while these structures are unquestionably essential for development, the material is largely dispensable for the formation of active embryonic nucleoli. In this mini-review, we will describe some unique features of oocytes and embryos with respect to ribosome biogenesis and the changes in the structure of oocyte and embryonic nucleoli that reflect this. We will also describe some of the different approaches that can be used to study nucleoli and NPBs in embryos and discuss the different results that might be expected. Finally, we ask whether the main function of nucleolar precursor bodies might lie in the genome organization and remodelling and what the involved components might be.

2021 ◽  
Vol 22 (7) ◽  
pp. 3690
Author(s):  
Veronique Jonckheere ◽  
Petra Van Damme

The evolutionary conserved N-alpha acetyltransferase Naa40p is among the most selective N-terminal acetyltransferases (NATs) identified to date. Here we identified a conserved N-terminally truncated Naa40p proteoform named Naa40p25 or short Naa40p (Naa40S). Intriguingly, although upon ectopic expression in yeast, both Naa40p proteoforms were capable of restoring N-terminal acetylation of the characterized yeast histone H2A Naa40p substrate, the Naa40p histone H4 substrate remained N-terminally free in human haploid cells specifically deleted for canonical Naa40p27 or 237 amino acid long Naa40p (Naa40L), but expressing Naa40S. Interestingly, human Naa40L and Naa40S displayed differential expression and subcellular localization patterns by exhibiting a principal nuclear and cytoplasmic localization, respectively. Furthermore, Naa40L was shown to be N-terminally myristoylated and to interact with N-myristoyltransferase 1 (NMT1), implicating NMT1 in steering Naa40L nuclear import. Differential interactomics data obtained by biotin-dependent proximity labeling (BioID) further hints to context-dependent roles of Naa40p proteoforms. More specifically, with Naa40S representing the main co-translationally acting actor, the interactome of Naa40L was enriched for nucleolar proteins implicated in ribosome biogenesis and the assembly of ribonucleoprotein particles, overall indicating a proteoform-specific segregation of previously reported Naa40p activities. Finally, the yeast histone variant H2A.Z and the transcriptionally regulatory protein Lge1 were identified as novel Naa40p substrates, expanding the restricted substrate repertoire of Naa40p with two additional members and further confirming Lge1 as being the first redundant yNatA and yNatD substrate identified to date.


2002 ◽  
Vol 13 (11) ◽  
pp. 4100-4109 ◽  
Author(s):  
Alexander Scherl ◽  
Yohann Couté ◽  
Catherine Déon ◽  
Aleth Callé ◽  
Karine Kindbeiter ◽  
...  

The notion of a “plurifunctional” nucleolus is now well established. However, molecular mechanisms underlying the biological processes occurring within this nuclear domain remain only partially understood. As a first step in elucidating these mechanisms we have carried out a proteomic analysis to draw up a list of proteins present within nucleoli of HeLa cells. This analysis allowed the identification of 213 different nucleolar proteins. This catalog complements that of the 271 proteins obtained recently by others, giving a total of ∼350 different nucleolar proteins. Functional classification of these proteins allowed outlining several biological processes taking place within nucleoli. Bioinformatic analyses permitted the assignment of hypothetical functions for 43 proteins for which no functional information is available. Notably, a role in ribosome biogenesis was proposed for 31 proteins. More generally, this functional classification reinforces the plurifunctional nature of nucleoli and provides convincing evidence that nucleoli may play a central role in the control of gene expression. Finally, this analysis supports the recent demonstration of a coupling of transcription and translation in higher eukaryotes.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1090 ◽  
Author(s):  
Pietro Carotenuto ◽  
Annalisa Pecoraro ◽  
Gaetano Palma ◽  
Giulia Russo ◽  
Annapina Russo

The nucleolus is a distinct sub-cellular compartment structure in the nucleus. First observed more than 200 years ago, the nucleolus is detectable by microscopy in eukaryotic cells and visible during the interphase as a sub-nuclear structure immersed in the nucleoplasm, from which it is not separated from any membrane. A huge number of studies, spanning over a century, have identified ribosome biogenesis as the main function of the nucleolus. Recently, novel functions, independent from ribosome biogenesis, have been proposed by several proteomic, genomic, and functional studies. Several works have confirmed the non-canonical role for nucleoli in regulating important cellular processes including genome stability, cell-cycle control, the cellular senescence, stress responses, and biogenesis of ribonucleoprotein particles (RNPs). Many authors have shown that both canonical and non-canonical functions of the nucleolus are associated with several cancer-related processes. The association between the nucleolus and cancer, first proposed by cytological and histopathological studies showing that the number and shape of nucleoli are commonly altered in almost any type of cancer, has been confirmed at the molecular level by several authors who demonstrated that numerous mechanisms occurring in the nucleolus are altered in tumors. Recently, therapeutic approaches targeting the nucleolus in cancer have started to be considered as an emerging “hallmark” of cancer and several therapeutic interventions have been developed. This review proposes an up-to-date overview of available strategies targeting the nucleolus, focusing on novel targeted therapeutic approaches. Finally, a target-based classification of currently available treatment will be proposed.


2019 ◽  
Vol 30 (7) ◽  
pp. 685-700 ◽  
Author(s):  
Caitlin Nyhus ◽  
Maria Pihl ◽  
Poul Hyttel ◽  
Vanessa Jane Hall

Abstract The nucleolus is a dynamically changing organelle that is central to a number of important cellular functions. Not only is it important for ribosome biogenesis, but it also reacts to stress by instigating a nucleolar stress response and is further involved in regulating the cell cycle. Several studies report nucleolar dysfunction in Alzheimer’s disease (AD). Studies have reported a decrease in both total nucleolar volume and transcriptional activity of the nucleolar organizing regions. Ribosomes appear to be targeted by oxidation and reduced protein translation has been reported. In addition, several nucleolar proteins are dysregulated and some of these appear to be implicated in classical AD pathology. Some studies also suggest that the nucleolar stress response may be activated in AD, albeit this latter research is rather limited and requires further investigation. The purpose of this review is to draw the connections of all these studies together and signify that there are clear changes in the nucleolus and the ribosomes in AD. The nucleolus is therefore an organelle that requires more attention than previously given in relation to understanding the biological mechanisms underlying the disease.


2010 ◽  
Vol 429 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Jingping Ge ◽  
Seth D. Crosby ◽  
Michael E. Heinz ◽  
Monica Bessler ◽  
Philip J. Mason

snoRNAs (small nucleolar RNAs) are key components of snoRNP (small nucleolar ribonucleoprotein) particles involved in modifying specific residues of ribosomal and other RNAs by pseudouridylation (H/ACA snoRNAs) or methylation (C/D snoRNAs). They are encoded within the introns of host genes, which tend to be genes whose products are involved in ribosome biogenesis or function. Although snoRNPs are abundant, ubiquitous and their components highly conserved, information concerning their expression during development or how their expression is altered in diseased states is sparse. To facilitate these studies we have developed a snoRNA microarray platform for the analysis of the abundance of snoRNAs in different RNA samples. In the present study we show that the microarray is sensitive and specific for the detection of snoRNAs. A mouse snoRNA microarray was used to monitor changes in abundance of snoRNAs after ablation of dyskerin, an H/ACA snoRNA protein component, from mouse liver, which causes a decrease in ribosome production. H/ACA snoRNAs were decreased in abundance in these livers while, unexpectedly, C/D snoRNAs were increased. The increase in C/D snoRNAs corresponded with an increase in the abundance of the mRNAs transcribed from snoRNA host genes, suggesting the increase may be part of a cellular response to defective ribosome synthesis.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Li-Wei Lee ◽  
Chi-Chang Lee ◽  
Chi-Ruei Huang ◽  
Szecheng J. Lo

Nucleolar size and appearance correlate with ribosome biogenesis and cellular activity. The mechanisms underlying changes in nucleolar appearance and regulation of nucleolar size that occur during differentiation and cell cycle progression are not well understood.Caenorhabditis elegansprovides a good model for studying these processes because of its small size and transparent body, well-characterized cell types and lineages, and because its cells display various sizes of nucleoli. This paper details the advantages of usingC. elegansto investigate features of the nucleolus during the organism's development by following dynamic changes in fibrillarin (FIB-1) in the cells of early embryos and aged worms. This paper also illustrates the involvement of thencl-1gene and other possible candidate genes in nucleolar-size control. Lastly, we summarize the ribosomal proteins involved in life span and innate immunity, and those homologous genes that correspond to human disorders of ribosomopathy.


2018 ◽  
Author(s):  
T. King ◽  
C.J. Leonard ◽  
J.C. Cooper ◽  
S. Nguyen ◽  
E. Joyce ◽  
...  

AbstractCondensins play a crucial role in the organization of genetic material by compacting and disentangling chromosomes. The condensin I and condensin II complexes are widely considered to have distinct functions based on studies in a few model organisms, although the specific functions of each complex are yet to be fully understood. The condensin II complex is critical for genome organization in Drosophila, and is a key anti-pairing factor that separates homologous chromosomes in somatic cells. Intriguingly, the Cap-G2 subunit of condensin II is absent in Drosophila melanogaster, and this loss may be related to the high levels of homologous chromosome pairing in somatic cells seen in flies. Here, we find that this Cap-G2 loss predates the origin of Dipterans, and other CapG2 losses have occurred independently in multiple insect lineages. Furthermore, the Cap-H2 and Cap-D3 subunits have also been repeatedly and independently lost in several insect orders, and some taxa lack condensin II-specific subunits entirely. We used Oligopaint DNA-FISH to quantify pairing levels in ten species across seven orders, representing several different configurations of the condensin II complex. We find that all non-Dipteran insects display near-uniform low pairing levels, suggesting that some key aspects of genome organization are robust to condensin II subunit losses. Finally, we observe consistent signatures of positive selection in condensin II subunits across flies and mammals. These findings suggest that these ancient complexes are far more evolutionarily labile than previously suspected, and are at the crossroads of several forms of genomic conflicts. Our results raise fundamental questions about the specific functions of the two condensin complexes and the interplay between them in taxa that have experienced subunit losses, and open the door to further investigations to elucidate the diversity of molecular mechanisms that underlie genome organization across various life forms.


2018 ◽  
pp. 219-239
Author(s):  
Іван Васильович Ковальчук

The article considers the process of the Ukrainian local police formation within the structure of the auxiliary Ukrainian administration. It was determined that both Organizations of Ukrainian Nationalists had taken an active part in the process. The members of their march units arrived in Zhytomyr region. During the period of military administration the Nazi occupation authority specified the number of military personnel, the main functions and direct reporting relationship of the Ukrainian auxiliary police. Originally, the given formation was qualified as the public organization subordinated to the local authorities, however, commandant's offices could engage it to perform their tasks. Its aggregate number could not exceed 1% of the population of a specific populated locality. The main function of the auxiliary police was to tackle crime and protect different objects. In its arsenal, the police had the captured Soviet rifles and a set of 5 cartridges for each one. Within a short period of time the whole network of the auxiliary police was established on the territory of Zhytomyr region. It consisted of country commands, district, municipal and regional divisions.Among the governing bodies and municipal police, for example, in Zhytomyr city, there were many of those who came from Western Ukraine and political immigrants from Western Europe who arrived on the territory occupied by Nazi after the beginning of the Soviet-German war. Nevertheless, after some time the occupation authorities at first resorted to a dissolution of the Ukrainian auxiliary police formations, and then it was re-structured and staffed according to new plans and Nazi perspective. In that format the Ukrainian auxiliary police were fully deprived of both Organizations of Ukrainian Nationalists influence, imbedded into the occupation structure and had to carry out the dirty work Nazi could not do because of lack of human resources and means. Since that time Nazi occupation authorities engaged officials from different divisions and departments of the local auxiliary police in their punitive actions against the local population, in particular in a genocide of specific ethnic groups.


Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2195
Author(s):  
Timothy John Vos ◽  
Ute Kothe

The small nucleolar RNA snR30 (U17 in humans) plays a unique role during ribosome synthesis. Unlike most members of the H/ACA class of guide RNAs, the small nucleolar ribonucleoprotein (snoRNP) complex assembled on snR30 does not direct pseudouridylation of ribosomal RNA (rRNA), but instead snR30 is critical for 18S rRNA processing during formation of the small subunit (SSU) of the ribosome. Specifically, snR30 is essential for three pre-rRNA cleavages at the A0/01, A1/1, and A2/2a sites in yeast and humans, respectively. Accordingly, snR30 is the only essential H/ACA guide RNA in yeast. Here, we summarize our current knowledge about the interactions and functions of snR30, discuss what remains to be elucidated, and present two non-exclusive hypotheses on the possible molecular function of snR30 during ribosome biogenesis. First, snR30 might be responsible for recruiting other proteins including endonucleases to the SSU processome. Second, snR30 may contribute to the refolding of pre-rRNA into a required conformation that serves as a checkpoint during ribosome biogenesis facilitating pre-rRNA cleavage. In both scenarios, the snR30 snoRNP may have scaffolding and RNA chaperoning activity. In conclusion, the snR30 snoRNP is a crucial player with an unknown molecular mechanism during ribosome synthesis, posing many interesting future research questions.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Xiaoling Tang ◽  
Ting Peng

The acidulant is widely used in the production of animal husbandry, and its use is affected by many factors, including environmental factors, dosage, diet composition, and animal’s own factors, so only the correct use of the acidulant can bring good results in animal production and financial income. This article takes acidifier as an example to study the application of compound chemical treatment in livestock farms. In this paper, the effect of using acidulant in the first 1 to 3 weeks after early weaning of piglets is obvious through this experimental study. The effect gradually decreases after 3 weeks and basically has no effect after 4 weeks. Experimental studies have found that the combination of organic acids, antibiotics, and high copper is the most effective. These three have different functions and have complementary or additive effects. Under harsh feeding conditions, especially when the environmental sanitation and environmental conditions are relatively poor, the effect of acidulants is better than good feeding conditions. Experimental data show that fulvic acid depletes milk’s somatic cells in a short period of time and then quickly activates immune function, which is indicated by the increase in lymphocytes in the blood. When a large number of somatic cells migrate to the breast, the somatic cells in milk will also increase, thereby improving the immunity mediated by human cells. The experimental results show that the BFA formula added 1% to the cattle feed. After the research control of this experiment, the milk output increased by 9–17%, and the quality milk output increased by 19.12%, so the use of acidulant increased feed compensation and reduces gastrointestinal diseases and the reproduction of microorganisms in the rumen of dairy cows.


Sign in / Sign up

Export Citation Format

Share Document