scholarly journals Cholesterol metabolism: a new molecular switch to control inflammation

2021 ◽  
Vol 135 (11) ◽  
pp. 1389-1408
Author(s):  
Diana Cardoso ◽  
Esperanza Perucha

Abstract The immune system protects the body against harm by inducing inflammation. During the immune response, cells of the immune system get activated, divided and differentiated in order to eliminate the danger signal. This process relies on the metabolic reprogramming of both catabolic and anabolic pathways not only to produce energy in the form of ATP but also to generate metabolites that exert key functions in controlling the response. Equally important to mounting an appropriate effector response is the process of immune resolution, as uncontrolled inflammation is implicated in the pathogenesis of many human diseases, including allergy, chronic inflammation and cancer. In this review, we aim to introduce the reader to the field of cholesterol immunometabolism and discuss how both metabolites arising from the pathway and cholesterol homeostasis are able to impact innate and adaptive immune cells, staging cholesterol homeostasis at the centre of an adequate immune response. We also review evidence that demonstrates the clear impact that cholesterol metabolism has in both the induction and the resolution of the inflammatory response. Finally, we propose that emerging data in this field not only increase our understanding of immunometabolism but also provide new tools for monitoring and intervening in human diseases, where controlling and/or modifying inflammation is desirable.

2018 ◽  
Vol 400 (1) ◽  
pp. 63-75 ◽  
Author(s):  
Sander Bekeschus ◽  
Christian Seebauer ◽  
Kristian Wende ◽  
Anke Schmidt

AbstractLeukocytes are professionals in recognizing and removing pathogenic or unwanted material. They are present in virtually all tissues, and highly motile to enter or leave specific sites throughout the body. Less than a decade ago, physical plasmas entered the field of medicine to deliver their delicate mix of reactive species and other physical agents for mainly dermatological or oncological therapy. Plasma treatment thus affects leukocytes via direct or indirect means: immune cells are either present in tissues during treatment, or infiltrate or exfiltrate plasma-treated areas. The immune system is crucial for human health and resolution of many types of diseases. It is therefore vital to study the response of leukocytes after plasma treatmentin vitroandin vivo. This review gathers together the major themes in the plasma treatment of innate and adaptive immune cells, and puts these into the context of wound healing and oncology, the two major topics in plasma medicine.


Author(s):  
Dr. Ahmed Al-Shukaili ◽  

In December 2019 a new type of coronaviruses appeared in China and named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the disease associated with this virus is called Coronavirus Disease 2019 or COVID-19. Currently, COVID19 is the main global health threat. In this review, we focus in the current knowledge of immune response to SARS-CoV-2. Dysregulation of immune system, such as elevation levels of proinflammatory mediators and their roles in disease progression and pathogenesis as well as imbalance between innate and adaptive immune cells, are discussed in this review.


2019 ◽  
Vol 20 (15) ◽  
pp. 1236-1243 ◽  
Author(s):  
Hernández-Ramos Reyna-Margarita ◽  
Castillo-Maldonado Irais ◽  
Rivera-Guillén Mario-Alberto ◽  
Ramírez-Moreno Agustina ◽  
Serrano-Gallardo Luis-Benjamín ◽  
...  

Background: The immune system is responsible for providing protection to the body against foreign substances. The immune system divides into two types of immune responses to study its mechanisms of protection: 1) Innate and 2) Adaptive. The innate immune response represents the first protective barrier of the organism that also works as a regulator of the adaptive immune response, if evaded the mechanisms of the innate immune response by the foreign substance the adaptive immune response takes action with the consequent antigen neutralization or elimination. The adaptive immune response objective is developing a specific humoral response that consists in the production of soluble proteins known as antibodies capable of specifically recognizing the foreign agent; such protective mechanism is induced artificially through an immunization or vaccination. Unfortunately, the immunogenicity of the antigens is an intrinsic characteristic of the same antigen dependent on several factors. Conclusion: Vaccine adjuvants are chemical substances of very varied structure that seek to improve the immunogenicity of antigens. The main four types of adjuvants under investigation are the following: 1) Oil emulsions with an antigen in solution, 2) Pattern recognition receptors activating molecules, 3) Inflammatory stimulatory molecules or activators of the inflammasome complex, and 4) Cytokines. However, this paper addresses the biological plausibility of two phytochemical compounds as vaccine adjuvants: 5) Lectins, and 6) Plant phenolics whose characteristics, mechanisms of action and disadvantages are addressed. Finally, the immunological usefulness of these molecules is discussed through immunological data to estimate effects of plant phenolics and lectins as vaccine adjuvants, and current studies that have implanted these molecules as vaccine adjuvants, demonstrating the results of this immunization.


2020 ◽  
Author(s):  
Bhanwar Lal Puniya ◽  
Robert Moore ◽  
Akram Mohammed ◽  
Rada Amin ◽  
Alyssa La Fleur ◽  
...  

AbstractThe human immune system, which protects against pathogens and diseases, is a complex network of cells and molecules. The effects of complex dynamical interactions of pathogens and immune cells on the immune response can be studied using computational models. However, a model of the entire immune system is still lacking. Here, we developed a comprehensive computational model that integrates innate and adaptive immune cells, cytokines, immunoglobulins, and nine common pathogens from different classes of virus, bacteria, parasites, and fungi. This model was used to investigate the dynamics of the immune system under two scenarios: (1) single infection with pathogens, and (2) various medically relevant pathogen coinfections. In coinfections, we found that the order of infecting pathogens has a significant impact on the dynamics of cytokines and immunoglobulins. Thus, our model provides a tool to simulate immune responses under different dosage of pathogens and their combinations, which can be further extended and used as a tool for drug discovery and immunotherapy. Furthermore, the model provides a comprehensive and simulatable blueprint of the human immune system as a result of the synthesis of the vast knowledge about the network-like interactions of various components of the system.


Author(s):  
Amar Deep ◽  
Suchit Swaroop ◽  
Ajay Kumar ◽  
Sumit Rungta

In December 2019, a severe disease with an unknown aetiology has appeared in a Wuhan City, Hubei province, China. Immediately, it was identified as novel Coronavirus Disease (COVID-19) that has spread globally and also called Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), and was characterised in China. As we know the presence of viruses with new genetic diversity in nature, it is unclear from where this virus has evolved and transmitted to humans at the first place. As the outbreak of COVID-19 progresses, epidemiological data is essential to guide situational awareness, and intervention strategies and also immune response in COVID-19. That’s why treatments dealing with the immune-pathology of SARS-CoV-2 infection is a major issue for focus now-a-days, while a rapid and well-coordinated immune response represent the first line of defence against the viral infection. Presently, limited data and information is available on the host innate and adaptive immune status of SARS-CoV-2 infected patients. Here, authors described that how the immune system plays the first line of defence against viral infection, and attempt to compile, accumulate and disseminate the immune response information on COVID-19 from the World Health Organisation (WHO), MEDLINE, Embase, Cochrane Library, Centers for Disease Control and Prevention COVID-19 Research Database and trials registries for the recognition in progress and finished studies, cohort, and from Randomised Controlled Trials (RCTs).


2021 ◽  
Vol 23 (5) ◽  
pp. 1005-1016
Author(s):  
A. A. Artemenkov

The review article analyzes literature data on the issues of immune response dysregulation during aging. It has been shown that impairment of innate and adaptive immune response in elderly and senile people under the conditions of spreading the new coronavirus infection is an aggravating factor in the course of the disease and recovery. Neuro-immuno-endocrine changes occurring in the organs of immune system, immunocompetent cells, molecules and receptor formations involved into the arising immune response have been traced. The imbalance of the brain-intestine-microbiota axis is considered in sufficient details, where a significant role is attributed to the changes occurring in hypothalamic-adrenal system under participation of biogenic neurotransmitters and neuromodulators. It is shown that intestinal microbiota may be involved into the neurodegeneration events, due to toxic effects on the brain via the neuro-immuno-endocrine and metabolic pathways. The data are presented, which show that adrenaline, norepinephrine, dopamine and serotonin are involved in the immune response dysregulation, thus making this process similar to the changes that occur during the general adaptation syndrome and stress response of the body. On the other hand, the review notes that chronic stress during aging not only alters the activity of macrophages, lymphocytes and dendritic cells, but also increases the level of proinflammatory cytokines in blood, thereby affecting permeability of the blood-brain barrier. The article emphasizes that with body aging, a neuroendocrine sensory pathway of immune response dysregulation is gradually formed. In this regard, it is noted that the afferent nerve endings and neurons of the vagus, adrenergic and peptidergic nerves are involved into dysfunction of immune system by affecting the processes occurring not only in thymus, but also in the brain. However, it is obvious that the pathodynamic “dysadapting circuit” formed in the higher compartments of nervous system is also involved in dysregulatory immune responses during aging. Hence, the work concludes that the signaling networks of the body's regulatory systems (nervous, immune and endocrine) are closely interconnected throughout the lifetime, but with aging and penetration of antigens into the body, this interaction is easily disrupted at different levels of organization of living matter, thus leading to dysregulation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhengguo Wu ◽  
Shang Li ◽  
Xiao Zhu

Cancer immunotherapy is a kind of therapy that can control and eliminate tumors by restarting and maintaining the tumor-immune cycle and restoring the body’s normal anti-tumor immune response. Although immunotherapy has great potential, it is currently only applicable to patients with certain types of tumors, such as melanoma, lung cancer, and cancer with high mutation load and microsatellite instability, and even in these types of tumors, immunotherapy is not effective for all patients. In order to enhance the effectiveness of tumor immunotherapy, this article reviews the research progress of tumor microenvironment immunotherapy, and studies the mechanism of stimulating and mobilizing immune system to enhance anti-tumor immunity. In this review, we focused on immunotherapy against tumor microenvironment (TME) and discussed the important research progress. TME is the environment for the survival and development of tumor cells, which is composed of cell components and non-cell components; immunotherapy for TME by stimulating or mobilizing the immune system of the body, enhancing the anti-tumor immunity. The checkpoint inhibitors can effectively block the inhibitory immunoregulation, indirectly strengthen the anti-tumor immune response and improve the effect of immunotherapy. We also found the checkpoint inhibitors have brought great changes to the treatment model of advanced tumors, but the clinical treatment results show great individual differences. Based on the close attention to the future development trend of immunotherapy, this study summarized the latest progress of immunotherapy and pointed out a new direction. To study the mechanism of stimulating and mobilizing the immune system to enhance anti-tumor immunity can provide new opportunities for cancer treatment, expand the clinical application scope and effective population of cancer immunotherapy, and improve the survival rate of cancer patients.


2020 ◽  
Author(s):  
Luca Pangrazzi ◽  
Erin Naismith ◽  
Carina Miggitsch ◽  
Jose’ Antonio Carmona Arana ◽  
Michael Keller ◽  
...  

Abstract Background. Obesity has been associated with chronic inflammation and oxidative stress. Both conditions play a determinant role in the pathogenesis of age-related diseases, such as immunosenescence. Adipose tissue can modulate the function of the immune system with the secretion of molecules influencing the phenotype of immune cells. The importance of the bone marrow (BM) in the maintenance of antigen-experienced adaptive immune cells has been documented in mice. Recently, some groups have investigated the survival of effector/memory T cells in the human BM. Despite this, whether high body mass index (BMI) may affect immune cells in the BM and the production of molecules supporting the maintenance of these cells it is unknown.Methods. Using flow cytometry, the frequency and the phenotype of immune cell populations were measured in paired BM and PB samples obtained from persons with different BMI. Furthermore, the expression of BM cytokines was assessed. The influence of cytomegalovirus (CMV) on T cell subsets was additionally considered, dividing the donors into the CMV- and CMV+ groups.Results. Our study suggests that increased BMI may affect both the maintenance and the phenotype of adaptive immune cells in the BM. While the BM levels of IL-15 and IL-6, supporting the survival of highly differentiated T cells, and oxygen radicals increased in overweight persons, the production of IFNγ and TNF by CD8+ T cells was reduced. In addition, the frequency of B cells and CD4+ T cells positively correlated with BMI in the BM of CMV- persons. Finally, the frequency of several T cell subsets, and the expression of senescence/exhaustion markers within these subpopulations, were affected by BMI. In particular, the levels of bona fide memory T cells may be reduced in overweight persons.Conclusion. Our work suggests that, in addition to aging and CMV, obesity may represent an additional risk factor for immunosenescence in adaptive immune cells. Metabolic interventions may help in improving the fitness of the immune system in the elderly.


Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 150
Author(s):  
Wan Rong Sia ◽  
Yichao Zheng ◽  
Fei Han ◽  
Shiwei Chen ◽  
Shaohua Ma ◽  
...  

Bats are reservoirs of a large number of viruses of global public health significance, including the ancestral virus for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the causative agent of coronavirus disease 2019 (COVID-19). Although bats are natural carriers of multiple pathogenic viruses, they rarely display signs of disease. Recent insights suggest that bats have a more balanced host defense and tolerance system to viral infections that may be linked to the evolutionary adaptation to powered flight. Therefore, a deeper understanding of bat immune system may provide intervention strategies to prevent zoonotic disease transmission and to identify new therapeutic targets. Similar to other eutherian mammals, bats have both innate and adaptive immune systems that have evolved to detect and respond to invading pathogens. Bridging these two systems are innate lymphocytes, which are highly abundant within circulation and barrier tissues. These cells share the characteristics of both innate and adaptive immune cells and are poised to mount rapid effector responses. They are ideally suited as the first line of defense against early stages of viral infections. Here, we will focus on the current knowledge of innate lymphocytes in bats, their function, and their potential role in host–pathogen interactions. Moreover, given that studies into bat immune systems are often hindered by a lack of bat-specific research tools, we will discuss strategies that may aid future research in bat immunity, including the potential use of organoid models to delineate the interplay between innate lymphocytes, bat viruses, and host tolerance.


2020 ◽  
Author(s):  
Luca Pangrazzi ◽  
Erin Naismith ◽  
Carina Miggitsch ◽  
Jose’ Antonio Carmona Arana ◽  
Michael Keller ◽  
...  

Abstract Background. Obesity has been associated with chronic inflammation and oxidative stress. Both conditions play a determinant role in the pathogenesis of age-related diseases, such as immunosenescence. Adipose tissue can modulate the function of the immune system with the secretion of molecules influencing the phenotype of immune cells. Recently, the importance of the bone marrow (BM) in the maintenance of antigen-experienced adaptive immune cells has been documented. Despite this, whether high body mass index (BMI) may affect immune cells in the BM and the production of molecules supporting the maintenance of these cells it is unknown. Methods. Using flow cytometry, the frequency and the phenotype of immune cell populations were measured in paired BM and PB samples obtained from persons with different BMI. Furthermore, the expression of BM cytokines was assessed. The influence of cytomegalovirus (CMV) on T cell subsets was additionally considered, dividing the donors into the CMV - and CMV + groups. Results. Our study suggests that increased BMI may affect both the maintenance and the phenotype of adaptive immune cells in the BM. While the BM levels of IL-15 and IL-6, supporting the survival of highly differentiated T cells, and oxygen radicals increased in overweight persons, the production of IFNγ and TNF by CD8 + T cells was reduced. In addition, the frequency of B cells and CD4 + T cells positively correlated with BMI in the BM of CMV - persons. Finally, the frequency of several T cell subsets, and the expression of senescence/exhaustion markers within these subpopulations, were affected by BMI. In particular, the levels of bona fide memory T cells may be reduced in overweight persons. Conclusion. Our work suggests that obesity may represent an independent risk factor supporting immunosenescence, in addition to aging and CMV. Metabolic interventions may help in improving the fitness of the immune system in the elderly.


Sign in / Sign up

Export Citation Format

Share Document