scholarly journals Research progress on factors affecting oxygen corrosion and countermeasures in oilfield development

2019 ◽  
Vol 131 ◽  
pp. 01031
Author(s):  
Xuanqi Yan ◽  
Yingrui Wang ◽  
Qingzhen Du ◽  
Weiqi Jiang ◽  
Fang Shang ◽  
...  

Water injection, air injection, air foam injection, and in-situ combustion technology are used step by step in the later period of oilfield. Oxygen corrosion caused by different development methods has become a problem that could not be ignored. In this paper, the mechanism of oxygen corrosion, the influencing factors of oxygen corrosion and the new progress of oxygen corrosion countermeasures in recent years are systematically analyzed. Anticorrosion methods for different development modes are put forward. The direction of further research on oxygen corrosion in oilfield development is proposed: ○1Prediction and control of corrosion in oxygen environment need to be further studied to better guide corrosion protection in high temperature injection and production of oil and gas wells. ○2The research of anticorrosive coating materials and corrosion inhibitor technology needs to be further developed in the direction of safety and environment-friendly.

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4570
Author(s):  
Aman Turakhanov ◽  
Albina Tsyshkova ◽  
Elena Mukhina ◽  
Evgeny Popov ◽  
Darya Kalacheva ◽  
...  

In situ shale or kerogen oil production is a promising approach to developing vast oil shale resources and increasing world energy demand. In this study, cyclic subcritical water injection in oil shale was investigated in laboratory conditions as a method for in situ oil shale retorting. Fifteen non-extracted oil shale samples from Bazhenov Formation in Russia (98 °C and 23.5 MPa reservoir conditions) were hydrothermally treated at 350 °C and in a 25 MPa semi-open system during 50 h in the cyclic regime. The influence of the artificial maturation on geochemical parameters, elastic and microstructural properties was studied. Rock-Eval pyrolysis of non-extracted and extracted oil shale samples before and after hydrothermal exposure and SARA analysis were employed to analyze bitumen and kerogen transformation to mobile hydrocarbons and immobile char. X-ray computed microtomography (XMT) was performed to characterize the microstructural properties of pore space. The results demonstrated significant porosity, specific pore surface area increase, and the appearance of microfractures in organic-rich layers. Acoustic measurements were carried out to estimate the alteration of elastic properties due to hydrothermal treatment. Both Young’s modulus and Poisson’s ratio decreased due to kerogen transformation to heavy oil and bitumen, which remain trapped before further oil and gas generation, and expulsion occurs. Ultimately, a developed kinetic model was applied to match kerogen and bitumen transformation with liquid and gas hydrocarbons production. The nonlinear least-squares optimization problem was solved during the integration of the system of differential equations to match produced hydrocarbons with pyrolysis derived kerogen and bitumen decomposition.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Yongxiang Zheng ◽  
Jianjun Liu ◽  
Bohu Zhang

The in situ stress has an important influence on fracture propagation and fault stability in deep formation. However, the development of oil and gas resources can only be determined according to the existing state of in situ stress in most cases. It is passive acceptance of existing in situ stress. Unfortunately, in some cases, the in situ stress conditions are not conducive to resource development. If the in situ stress can be interfered in some ways, the stress can be adjusted to a more favorable state. In order to explore the method of artificial interference, this paper established the calculation method of the in situ stress around the cracks based on fracture mechanics at first and obtained the redistribution law of the in situ stress. Based on the obtained redistribution law, attempts were made to interfere with the surrounding in situ stress by water injection in the preexisting crack. On this basis, the artificial stress intervention was applied. The results show that artificial interference of stress can effectively be achieved by water injection in the fracture. And changing the fluid pressure in the crack is the most effective way. By stress artificial intervention, critical pressure for water channelling in fractured reservoirs, directional propagation of cracks in hydraulic fracturing, and stress adjustment on the structural plane were applied. This study provides guidance for artificial stress intervention in the exploitation of the underground resource.


2020 ◽  
Vol 11 (1) ◽  
pp. 7712-7724

Smart water injection in oil and gas reservoirs is one of the most popular and low-cost methods to increase the recovery factor of reservoirs. However, due to the abundance of sandstone reservoirs in the world and the necessity to increase recovery in these types of reservoirs, injection of smart water will disturb the distribution of intergranular stresses in the porous media which results in sand production that causes many problems in many parts of the petroleum industry. For this reason, the necessity to investigate possible parameters affecting sand production was increased. Also, according to the relative researches, the injection of smart water changes the reservoir pH, which could change the sand production rate. In this paper, a comprehensive study on the effect of pH or alkalinity on sand production, as well as the effect and mechanism of silica nanoparticles, has been performed to control the grains separated from the rock. The effect and mechanism of silica nanoparticles with economic concerns have also been analyzed, which can significantly reduce and control the amount of sand production. In this paper, we can determine the effectiveness and the most effective parameters in an acidic or basic environment.


Author(s):  
Kenneth S. Vecchio ◽  
John A. Hunt

In-situ experiments conducted within a transmission electron microscope provide the operator a unique opportunity to directly observe microstructural phenomena, such as phase transformations and dislocation-precipitate interactions, “as they happen”. However, in-situ experiments usually require a tremendous amount of experimental preparation beforehand, as well as, during the actual experiment. In most cases the researcher must operate and control several pieces of equipment simultaneously. For example, in in-situ deformation experiments, the researcher may have to not only operate the TEM, but also control the straining holder and possibly some recording system such as a video tape machine. When it comes to in-situ fatigue deformation, the experiments became even more complicated with having to control numerous loading cycles while following the slow crack growth. In this paper we will describe a new method for conducting in-situ fatigue experiments using a camputer-controlled tensile straining holder.The tensile straining holder used with computer-control system was manufactured by Philips for the Philips 300 series microscopes. It was necessary to modify the specimen stage area of this holder to work in the Philips 400 series microscopes because the distance between the optic axis and holder airlock is different than in the Philips 300 series microscopes. However, the program and interfacing can easily be modified to work with any goniometer type straining holder which uses a penrmanent magnet motor.


Author(s):  
R.A. Bagrov ◽  
◽  
V.I. Leunov

The mechanisms of transmission of potato viruses from plants to aphid vectors and from aphids to uninfected plants are described, including the example of the green peach aphid (Myzus persicae, GPA). Factors affecting the spreading of tuber necrosis and its manifestation on plants infected with potato leafroll virus (PLRV) are discussed. Recommendations for PLRV and GPA control in the field are given.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 575
Author(s):  
Shangyi Lou ◽  
Jin He ◽  
Hongwen Li ◽  
Qingjie Wang ◽  
Caiyun Lu ◽  
...  

Subsoiling has been acknowledged worldwide to break compacted hardpan, improve soil permeability and water storage capacity, and promote topsoil deepening and root growth. However, there exist certain factors which limit the wide in-field application of subsoiling machines. Of these factors, the main two are poor subsoiling quality and high energy consumption, especially the undesired tillage depth obtained in the field with cover crops. Based on the analysis of global adoption and benefits of subsoiling technology, and application status of subsoiling machines, this article reviewed the research methods, technical characteristics, and developing trends in five key aspects, including subsoiling shovel design, anti-drag technologies, technologies of tillage depth detection and control, and research on soil mechanical interaction. Combined with the research progress and application requirements of subsoiling machines across the globe, current problems and technical difficulties were analyzed and summarized. Aiming to solve these problems, improve subsoiling quality, and reduce energy consumption, this article proposed future directions for the development of subsoiling machines, including optimizing the soil model in computer simulation, strengthening research on the subsoiling mechanism and comprehensive effect, developing new tillage depth monitoring and control systems, and improving wear-resisting properties of subsoiling shovels.


Author(s):  
Jinbao Zhang ◽  
Jaeyoung Lee

Abstract This study has two main objectives: (i) to analyse the effect of travel characteristics on the spreading of disease, and (ii) to determine the effect of COVID-19 on travel behaviour at the individual level. First, the study analyses the effect of passenger volume and the proportions of different modes of travel on the spread of COVID-19 in the early stage. The developed spatial autoregressive model shows that total passenger volume and proportions of air and railway passenger volumes are positively associated with the cumulative confirmed cases. Second, a questionnaire is analysed to determine changes in travel behaviour after COVID-19. The results indicate that the number of total trips considerably decreased. Public transport usage decreased by 20.5%, while private car usage increased by 6.4%. Then the factors affecting the changes in travel behaviour are analysed by logit models. The findings reveal significant factors, including gender, occupation and travel restriction. It is expected that the findings from this study would be helpful for management and control of traffic during a pandemic.


2021 ◽  
Vol 13 (12) ◽  
pp. 6861
Author(s):  
Xiya Liang ◽  
Pengfei Li ◽  
Juanle Wang ◽  
Faith Ka Shun Chan ◽  
Chuluun Togtokh ◽  
...  

Mongolia is a globally crucial region that has been suffering from land desertification. However, current understanding on Mongolia’s desertification is limited, constraining the desertification control and sustainable development in Mongolia and even other parts of the world. This paper studied spatiotemporal patterns, driving factors, mitigation strategies, and research methods of desertification in Mongolia through an extensive review of literature. Results showed that: (i) remote sensing monitoring of desertification in Mongolia has been subject to a relatively low spatial resolution and considerable time delay, and thus high-resolution and timely data are needed to perform a more precise and timely study; (ii) the contribution of desertification impacting factors has not been quantitatively assessed, and a decoupling analysis is desirable to quantify the contribution of factors in different regions of Mongolia; (iii) existing desertification prevention measures should be strengthened in the future. In particular, the relationship between grassland changes and husbandry development needs to be considered during the development of desertification prevention measures; (iv) the multi-method study (particularly interdisciplinary approaches) and desertification model development should be enhanced to facilitate an in-depth desertification research in Mongolia. This study provides a useful reference for desertification research and control in Mongolia and other regions of the world.


Sign in / Sign up

Export Citation Format

Share Document