scholarly journals Evaluating the suitability of groundwater for drinking purposes in the North Chengdu Plain, China

2019 ◽  
Vol 81 ◽  
pp. 01006
Author(s):  
Adam Khalifa Mohamed ◽  
Liu Dan ◽  
Song Kai ◽  
Elsiddig Eldaw ◽  
Salma Abualela

Groundwater is a significant and crucial component for all development activities of any life support system. In this study, the hydrochemical analysis and water quality index method (WQI) were used to assess groundwater quality for drinking purposes. Twelve groundwater samples were collected and analyzed into fourteen parameters which were considered as important indicators for assessing groundwater quality. A comparative study of these parameters with that of the Chinese Groundwater Standard (GB/T14848-2017) was conducted. It can be depicted from the results that groundwater quality is categorized as very hard, fresh water and slightly alkaline in nature. The major sequence of dominant cations and anions in groundwater are Ca2+ > Mg2+ > Na+ > K+ and HCO-3 > SO2-4 > Cl- respectively. From the total 12 samples analyzed, the parameters of TH, NH+4, Fe and Mn of samples exceeded the limits set by (GB/T14848-2017) standard. Piper diagram illustrated that groundwater samples of the studied area are mostly of Ca-Mg-HCO3-SO4 type. WQI showed all samples fall between excellent to good category of water and suitable for drinking purposes. The quality of groundwater is mainly affected from anthropogenic activities and natural influence. The proposed method is reliable and effcient for groundwater pollution assessment and can be used in decision-making.

Author(s):  
Adam Mohamed ◽  
Liu Dan ◽  
Song Kai ◽  
Mohamed Mohamed ◽  
Elsiddig Aldaw ◽  
...  

Groundwater is a major water resource in the North Chengdu Plain, China. The research objective is to determine the quality and suitability of groundwater for drinking purposes within the vicinity of a shallow, unconsolidated aquifer of Quaternary age. In this study, a detailed investigation was conducted to define the hydrochemical characteristics that control the quality of groundwater, based on traditional methods. Considering the uncertainties linked with water resources and the environmental complications, the fuzzy logic method was used in the determination of groundwater quality for more precise findings that support decision-making. To achieve such an objective, sixteen water quality guidelines were used to determine groundwater quality status in six selected wells. The results showed that the groundwater is neutral, very hard, and fresh in nature. Dominating cations and anions are in the order of Ca 2 + > Na + > Mg 2 + > K + and HCO 3 - > SO 4 2 - > Cl - . The Piper trilinear diagram demonstrates that the hydrochemical facies of groundwater are mostly of Ca-HCO 3 type. Statistical analysis denotes a positive correlation between most of the chemical parameters. The study took the results of the fuzzy logic evaluation method into consideration, to classify the samples into five groups according to the Chinese groundwater quality standard (GB/T 14848-93) for their suitability for domestic use. The results demonstrated that the quality of the groundwater samples is within grade II and III, and is suitable for drinking purposes. The comprehensive evaluation of groundwater quality is critical to aid sensitive policy decisions, and the proposed approach can guarantee reliable findings to that effect. The results of this study would also be helpful to future researches related to groundwater quality assessment.


2015 ◽  
Vol 15 (4) ◽  
pp. 784-792 ◽  
Author(s):  
Nastaran Khodabakhshi ◽  
Gholamreza Asadollahfardi ◽  
Nima Heidarzadeh

Pollution control and removal of pollutants from groundwater are a challenging and expensive task. The aims of this paper are to determine the aquifer vulnerability of Sefid-Dasht, in Chaharmahal and Bakhtiari province, Iran, using the DRASTIC model. In addition, the groundwater quality index (GQI) technique was applied to assess the groundwater quality and study the spatial variability of major ion concentrations using a geographic information system (GIS). The vulnerability index ranged from 65 to 132, classified into two classes: low and moderate vulnerability. In the southern part of the aquifer, the vulnerability was moderate. Furthermore, the results indicate that the magnitude of the GQI index varies from 92% to 95%. This means the water has a suitable quality. However, from the north to the south and southwest of the aquifer, the water quality has been deteriorating, and the highest concentration of major ions was found in the southwest of the Sefid-Dasht aquifer. A comparison of the vulnerability maps with the GQI index map indicated a poor relation between them. In the DRASTIC method, movement of groundwater is not considered and may be the reason for such inconsistency. However, the movement of groundwater can transport contaminants.


2019 ◽  
Vol 16 (1) ◽  
pp. 0088
Author(s):  
Hussein Ilaibi Zamil Al-Sudani

A groundwater quality assessment has been carried out in northeast part of Anbar governorate in western Iraq. We analyzed hydrochemical parameters such as pH, electrical conductivity, total dissolved solids presence of ions to describe groundwater quality. The study area has the only confined aquifer within the geological formation extended in area. Values of groundwater hydrochemical parameters were ranged from (7) to (7.9) for ph, (1599) to (6800) µmhos/cm for electrical conductivity (EC) and (1048) to (4446) mg/l for total dissolved solids (TDS). The origins and types of groundwater in the area were of marine origin and MgCl2 water type while only (6) samples were of continental origin and Na2SO4 water type. Groundwater utilization indicated that it can't be used for drinking purposes, while few groundwater wells can be used for agricultural and (33) groundwater samples can be used for animal purposes. However, the nature of the soil in the area and the depth of the groundwater qualified water for agricultural uses in significant and wide ranges.


2019 ◽  
Vol 10 (1) ◽  
pp. 22-28
Author(s):  
Sanober Rafi ◽  
Owais Niaz ◽  
Sadaf Naseem ◽  
Umair Majeed ◽  
Humaira Naz

This study is aimed to evaluate the groundwater quality of Gulshan-e-Iqbal and Liaquatabad towns inKarachi. Thirty (n=30) groundwater samples were randomly collected from different locations by electrically pumpedwells at various depths (14-91m). All the water samples were analyzed to determine their suitability for drinkingpurpose based on various physicochemical parameters. Data reveal that high concentration of TDS and hardness havedeteriorated the groundwater quality of study area. The main phenomenon responsible for groundwater pollution is theseawater intrusion due to the proximity of study area to the Arabian sea. Large scale unplanned urbanization, poorwaste management and other anthropogenic activities have also triggered the deterioration of groundwater quality.Study showed that local geology plays vital role in the distribution of major cations and anions. Data suggested thatground water of this study area is highly contaminated by seawater intrusion and considered not fit for drinkingpurpose.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3426
Author(s):  
Haipeng Guo ◽  
Muzi Li ◽  
Lu Wang ◽  
Yunlong Wang ◽  
Xisheng Zang ◽  
...  

Groundwater is an irreplaceable resource for irrigation and drinking in the North China Plain, and the quality of groundwater is of great importance to human health and social development. In this study, using the information from 59 groups of groundwater samples, groundwater quality conditions for irrigation and drinking purposes in an agricultural region of the North China Plain were analyzed. The groundwater belongs to a Quaternary loose rock pore water aquifer. The depths of shallow groundwater wells are 20–150 m below the surface, while the depths of deep groundwater wells are 150–650 m. The sodium adsorption ratio (SAR), sodium percentage (%Na), residual sodium carbonate (RSC), magnesium hazard (MH), permotic index (PI) and electrical conductivity (EC) were selected as indexes to evaluate the shallow groundwater suitability for irrigation. What’s more, the deep groundwater suitability for drinking was assessed and the human health risk of excessive chemicals in groundwater was studied. Results revealed that SAR, Na% and RSC indexes indicated the applicability of shallow groundwater for agricultural irrigation in the study area. We found 57.1% of the shallow groundwater samples were located in high salinity with a low sodium hazard zone. The concentrations of fluorine (F−) in 79.0% of the deep groundwater samples and iodine (I−) in 21.1% of the deep groundwater samples exceeded the permissible limits, respectively. The total hazard quotient (HQ) values of fluorine in over half of the deep groundwater samples exceeded the safety limits, and the health risk degree was ranked from high to low as children, adult females and adult males. In addition to natural factors, the soil layer compression caused by groundwater over-exploitation increased the fluorine concentration in groundwater. Effective measures are needed to reduce the fluorine content of the groundwater of the study area.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Ajay Govind Bhatt ◽  
Anand Kumar ◽  
Priya Ranjan Trivedi

AbstractThis study is conducted along the middle Gangetic floodplain, to investigate the hydrogeochemical characteristics and suitability of groundwater for irrigation and human consumptions. Altogether 65 groundwater samples were collected and analyzed for major ions and water quality parameters. pH of all the samples except 1 is found > 7, which suggests alkaline aquifer condition. Groundwater samples predominately belong to Ca-Mg-HCO3 water type followed by Na-HCO3, Mg-HCO3 and Mg-SO4 water types. Hierarchical cluster analysis (HCA) combines groundwater into two distinct groups, Group 1 is found as less mineralized as the average EC value is found 625.3 μS/cm, while it is found 1375 μS/cm for Group 2. The results of correlation analysis and PCA suggest influence of natural and anthropogenic activities on groundwater. PCA extracts four major PCs which describes 71.7% of total variance. PC1 indicates influence of both lithogenic and anthropogenic activities on groundwater quality. PC2 and PC3 infer natural factors, and PC4 suggests influence of anthropogenic activities on groundwater. Exceeding concentration of F−, Fe and Mn above WHO guidelines are found as major public health concern. WQI of all except 4 groundwater samples suggests excellent to good water quality; however, 23% of the samples are not suitable based on WPI values. Irrigation indices suggest that groundwater is mostly suitable for irrigation; however, 10.7%, 12.3% and 3% samples for RSBC, MAR and KR, respectively, exceed the recommended limits and are unsuitable for irrigation. A proper management strategy and quality assurance is recommended before groundwater consumption and use in the study area.


Author(s):  
K.G. Sekar ◽  
K. Suriyakala

Ariyalur is one of the districts in Tamilnadu it is rich in limestone resource. A study on geochemical characterization of ground water and its suitability for drinking purposes was carried out. Twenty five groundwater samples were collected from bore wells and open wells during Pre monsoon seasons of 2014. Groundwater is the main principle source for drinking, irrigation water and other activities in our study area. It is an indispensable source of our life. The problem of groundwater quality obtains high importance in this present-day, whether in the study area or any other countries in the world. The present study was carried out to analyse and evaluate the groundwater samples collected from residential areas of Udayarpalyam Taluk. The analyzed physicochemical parameters such as pH, electrical conductivity, total dissolved solids, calcium, magnesium, sodium, potassium, bicarbonate, sulphate, phosphates, chloride, nitrate, and fluoride are used to characterize the groundwater quality and its suitability for drinking uses. Calcium, sodium, chloride and sulphate are the dominant ions in the groundwater chemistry. The Groundwater is not suitable for drinking purposes at several locations in this area. Each parameter was compared with its standard permissible limit as prescribed by WHO/BIS. The analytical results indicated that the ground water quality was found unsatisfactory for drinking purpose in some location.


2015 ◽  
Vol 14 (2) ◽  
pp. 325-339
Author(s):  
M. F. El-Shahat ◽  
M. A. Sadek ◽  
W. M. Mostafa ◽  
K. H. Hagagg

The present investigation has been conducted to delineate the hydrogeochemical and environmental factors that control the water quality of the groundwater resources in the north-east of Cairo. A complementary approach based on hydrogeochemistry and a geographical information system (GIS) based protectability index has been employed for conducting this work. The results from the chemical analysis revealed that the groundwater of the Quaternary aquifer is less saline than that of the Miocene aquifer and the main factors that control the groundwater salinity in the studied area are primarily related to the genesis of the original recharging water modified after by leaching, dissolution, cation exchange, and fertilizer leachate. The computed groundwater quality index (WQI) falls into two categories: fair for almost all the Miocene groundwater samples, while the Quaternary groundwater samples are all have a good quality. The retarded flow and non-replenishment of the Miocene aquifer compared to the renewable active recharge of the Quaternary aquifer can explain this variation of WQI. The index and overlay approach exemplified by the DUPIT index has been used to investigate the protectability of the study aquifers against diffuse pollutants. Three categories (highly protectable less vulnerable, moderately protectable moderately vulnerable and less protectable highly vulnerable) have been determined and areally mapped.


2016 ◽  
Vol 16 (4) ◽  
pp. 1132-1137 ◽  
Author(s):  
Nawel Benouara ◽  
Abdelaziz Laraba ◽  
Lamia Hachemi Rachedi

Scarcity of water, pollution load, political issues and rising population have drawn great attention for proper management of water resources such as groundwater in the 21st century. The evaluation of groundwater quality is a critical element in the assessment of water resources. The quality/potability of water that is consumed defines the baseline of protection against many diseases and infections. The present study aims to calculate the water quality index (WQI) by the analysis of seven physico-chemical parameters according to the National Sanitation Foundation (NSF) to assess the suitability of water for drinking, irrigation purposes and other human uses. In the present investigation, ten groundwater samples were collected from various parts of Seraidi municipality area located in the north-east of Algeria, Physico-chemical parameters such as pH, temperature, dissolved oxygen, phosphates, nitrates, turbidity and fecal coliforms were analyzed. The overall WQI values for all the samples were found to be in the range of 68–86, which reveals the fact that the quality of all the samples is only medium to good and could be used for drinking and other domestic uses only after proper treatment.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3589
Author(s):  
Javed Iqbal ◽  
Chunli Su ◽  
Abdur Rashid ◽  
Nan Yang ◽  
Muhammad Yousuf Jat Baloch ◽  
...  

Groundwater is a critical water supply for safe drinking water, agriculture, and industry worldwide. In the Khanewal district of Punjab, Pakistan, groundwater has severely deteriorated during the last few decades due to environmental changes and anthropogenic activities. Therefore, 68 groundwater samples were collected and analyzed for their main ions and trace elements to investigate the suitability of groundwater sources for drinking and agricultural purposes. Principal component analysis (PCA) and cluster analysis (CA) were employed to determine the major factors influencing groundwater quality. To assess the groundwater’s appropriateness for drinking and irrigation, drinking and agricultural indices were used. The pH of the groundwater samples ranged from 6.9 to 9.2, indicating that the aquifers were slightly acidic to alkaline. The major cations were distributed as follows: Na+ > Ca2+ > Mg2+ > K+. Meanwhile, the anions are distributed as follows: HCO3− > SO42− > Cl− > F−. The main hydrochemical facies were identified as a mixed type; however, a mixed magnesium, calcium, and chloride pattern was observed. The reverse ion exchange process helps in exchanging Na+ with Ca2+ and Mg2+ ions in the groundwater system. Rock weathering processes, such as the dissolution of calcite, dolomite, and gypsum minerals, dominated the groundwater hydrochemistry. According to the Weight Arithmetic Water Quality Index (WAWQI), 50% of the water samples were unsafe for drinking. The Wilcox diagram, USSL diagram, and some other agricultural indices resulted in around 32% of the groundwater samples being unsuitable for irrigation purposes. The Khanewal’s groundwater quality was vulnerable due to geology and the influence of anthropogenic activities. For groundwater sustainability in Khanewal, management strategies and policies are required.


Sign in / Sign up

Export Citation Format

Share Document