scholarly journals Efficiency improvement for assigning of cutting conditions on the basis of the thermo-EMF signal

2018 ◽  
Vol 224 ◽  
pp. 01067 ◽  
Author(s):  
Zhanna Tikhonova ◽  
Dmitriy Kraiynev ◽  
Evgeniy Frolov

In the realities of modern machine-building production, control and management of processes occurring in the cutting zone are of great importance. The acquisition of control will significantly improve the stability and quality of processing, and the possibility of monitoring will help to increase the economic efficiency of production. This article presents the potential of the thermo-emf signal in a natural thermocouple “tool – workpiece” which is considered to be an information signal from the cutting zone. It also shows experimental proof of the influence between honing width on the front surface of the tool and its size.

2021 ◽  
Vol 2094 (4) ◽  
pp. 042006
Author(s):  
E Yu Remshev ◽  
Z N Rasulov ◽  
S A Voinash ◽  
V A Sokolova ◽  
I A Teterina ◽  
...  

Abstract The main production of machine-building enterprises of various industries is the production of metal parts and products, 90-95% of which are manufactured using metal processing by pressure. Ensuring the stability of the technological processes of cold stamping is impossible without the use of interoperative coatings, which play the role of lubrication, preventing the diffusion “setting” (interpenetration at the atomic-molecular level) of the processed materials and tools. Therefore, one of the tasks in constructing the technology for manufacturing parts from these materials is to conduct a test cycle to establish the most acceptable coatings at the intermediate stages of processing. In the process of studying the operability and manufacturability, it is also advisable to use new methods for evaluating quality indicators at separate stages of processing semi-finished products and at the stages of control of finished products, which allows practically eliminating defects due to internal defects, ensuring the uniformity of the microstructure and predicting the operability of finished products during operation. Ensuring the quality of stamped semi-finished products made of refractory metals (niobium, molybdenum) is an urgent task due to the significant proportion of defects during cold stamping of these parts.


2019 ◽  
pp. 3-8
Author(s):  
N.Yu. Bobrovskaya ◽  
M.F. Danilov

The criteria of the coordinate measurements quality at pilot-experimental production based on contemporary methods of quality management system and traditional methods of the measurements quality in Metrology are considered. As an additional criterion for quality of measurements, their duration is proposed. Analyzing the problem of assessing the quality of measurements, the authors pay particular attention to the role of technological heredity in the analysis of the sources of uncertainty of coordinate measurements, including not only the process of manufacturing the part, but all stages of the development of design and technological documentation. Along with such criteria as the degree of confidence in the results of measurements; the accuracy, convergence, reproducibility and speed of the results must take into account the correctness of technical specification, and such characteristics of the shape of the geometric elements to be controlled, such as flatness, roundness, cylindrical. It is noted that one of the main methods to reduce the uncertainty of coordinate measurements is to reduce the uncertainty in the initial data and measurement conditions, as well as to increase the stability of the tasks due to the reasonable choice of the basic geometric elements (measuring bases) of the part. A prerequisite for obtaining reliable quality indicators is a quantitative assessment of the conditions and organization of the measurement process. To plan and normalize the time of measurements, the authors propose to use analytical formulas, on the basis of which it is possible to perform quantitative analysis and optimization of quality indicators, including the speed of measurements.


Author(s):  
A.M. Zetty Akhtar ◽  
M.M. Rahman ◽  
K. Kadirgama ◽  
M.A. Maleque

This paper presents the findings of the stability, thermal conductivity and viscosity of CNTs (doped with 10 wt% graphene)- TiO2 hybrid nanofluids under various concentrations. While the usage of cutting fluid in machining operation is necessary for removing the heat generated at the cutting zone, the excessive use of it could lead to environmental and health issue to the operators. Therefore, the minimum quantity lubrication (MQL) to replace the conventional flooding was introduced. The MQL method minimises the usage of cutting fluid as a step to achieve a cleaner environment and sustainable machining. However, the low thermal conductivity of the base fluid in the MQL system caused the insufficient removal of heat generated in the cutting zone. Addition of nanoparticles to the base fluid was then introduced to enhance the performance of cutting fluids. The ethylene glycol used as the base fluid, titanium dioxide (TiO2) and carbon nanotubes (CNTs) nanoparticle mixed to produce nanofluids with concentrations of 0.02 to 0.1 wt.% with an interval of 0.02 wt%. The mixing ratio of TiO2: CNTs was 90:10 and ratio of SDBS (surfactant): CNTs was 10:1. The stability of nanofluid checked using observation method and zeta potential analysis. The thermal conductivity and viscosity of suspension were measured at a temperature range between 30˚C to 70˚C (with increment of 10˚C) to determine the relationship between concentration and temperature on nanofluid’s thermal physical properties. Based on the results obtained, zeta potential value for nanofluid range from -50 to -70 mV indicates a good stability of the suspension. Thermal conductivity of nanofluid increases as an increase of temperature and enhancement ratio is within the range of 1.51 to 4.53 compared to the base fluid. Meanwhile, the viscosity of nanofluid shows decrements with an increase of the temperature remarks significant advantage in pumping power. The developed nanofluid in this study found to be stable with enhanced thermal conductivity and decrease in viscosity, which at once make it possible to be use as nanolubricant in machining operation.


Author(s):  
N.A. Jurk ◽  

The article presents scientific research in the field of statistical controllability of the food production process using the example of bakery products for a certain time interval using statistical methods of quality management. During quality control of finished products, defects in bakery products were identified, while the initial data were recorded in the developed form of a checklist for registering defects. It has been established that the most common defect is packaging leakage. For the subsequent statistical assessment of the stability of the production process and further analysis of the causes of the identified defect, a Shewhart control chart (p-card by an alternative feature) was used, which allows you to control the quality of manufactured products by the number of defects detected. Analyzing the control chart, it was concluded that studied process is conditionally stable, and the emerging defects are random. At the last stage of the research, the Ishikawa causal diagram was used, developed using the 6M mnemonic technique, in order to identify the most significant causes that affect the occurrence of the considered defect in bakery products. A more detailed study will allow the enterprise to produce food products that meet the established requirements.


2020 ◽  
Vol 4 (141) ◽  
pp. 114-122
Author(s):  
DAR’YA LEBEDEVA ◽  
◽  
ANNA KARPUNICHEVA

Large forces and significant thermal effects are created on the rolls when rolling sheets. The higher the stability of the rolls, the less downtime during their rerolling and higher productivity. (Research purpose) The research purpose is in analyzing the ways of restoring rolls and choose the most appropriate method for restoring these parts. (Materials and methods) The article presents the analysis of the scientific and technical literature on the topic of rolling production, methods for restoring large-sized machine parts of machine-building and metallurgical industries that work in difficult conditions and are subject to a high degree of wear. Authors try to solve the problem by means of comparative and logical analysis based on theoretical and empirical methods of scientific research. (Results and discussion) The article presents two groups of methods for restoring rolled rolls: banding and surfacing the working layer of the roll. Authors have analyzed each method in terms of technology, equipment, and feasibility. The article presents the advantages and disadvantages of the methods under consideration. (Conclusions) The most acceptable way to restore parts with a high degree of wear is surfacing. It is most efficient to apply submerged surfacing using an additional hot additive. Such surfacing, despite some complication of the equipment design, allows to deposit the metal on the roll with low heat input and in most cases in one pass. Surfacing using an additional hot additive allows to increase the productivity of the process by up to 250 percent while reducing the penetration depth by 2-3 times and saving energy by up to 40 percent.


2020 ◽  
Vol 1614 ◽  
pp. 012044
Author(s):  
D Gramakov ◽  
A Larchenko ◽  
N Filippenko ◽  
A Livshits ◽  
D Bakanin ◽  
...  

Author(s):  
Johannes Klement

AbstractTo which extent do happiness correlates contribute to the stability of life satisfaction? Which method is appropriate to provide a conclusive answer to this question? Based on life satisfaction data of the German SOEP, we show that by Negative Binomial quasi-maximum likelihood estimation statements can be made as to how far correlates of happiness contribute to the stabilisation of life satisfaction. The results show that happiness correlates which are generally associated with a positive change in life satisfaction, also stabilise life satisfaction and destabilise dissatisfaction with life. In such as they lower the probability of leaving positive states of life satisfaction and increase the probability of leaving dissatisfied states. This in particular applies to regular exercise, volunteering and living in a marriage. We further conclude that both patterns in response behaviour and the quality of the measurement instrument, the life satisfaction scale, have a significant effect on the variation and stability of reported life satisfaction.


Drones ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 22
Author(s):  
Andrew Oakey ◽  
Tim Waters ◽  
Wanqing Zhu ◽  
Paul G. Royall ◽  
Tom Cherrett ◽  
...  

The concept of transporting medical products by drone is gaining a lot of interest amongst the medical and logistics communities. Such innovation has generated several questions, a key one being the potential effects of flight on the stability of medical products. The aims of this study were to quantify the vibration present within drone flight, study its effect on the quality of the medical insulin through live flight trials, and compare the effects of vibration from drone flight with traditional road transport. Three trials took place in which insulin ampoules and mock blood stocks were transported to site and flown using industry standard packaging by a fixed-wing or a multi-copter drone. Triaxial vibration measurements were acquired, both in-flight and during road transit, from which overall levels and frequency spectra were derived. British Pharmacopeia quality tests were undertaken in which the UV spectra of the flown insulin samples were compared to controls of known turbidity. In-flight vibration levels in both the drone types exceeded road induced levels by up to a factor of three, and predominant vibration occurred at significantly higher frequencies. Flown samples gave clear insulin solutions that met the British Pharmacopoeia specification, and no aggregation of insulin was detected.


2021 ◽  
Vol 5 (2) ◽  
pp. 42
Author(s):  
Abdelkrem Eltaggaz ◽  
Ibrahim Nouzil ◽  
Ibrahim Deiab

Minimum Quantity Lubrication nanofluid (MQL-nanofluid) is a viable sustainable alternative to conventional flood cooling and provides very good cooling and lubrication in the machining of difficult to cut materials such as titanium and Inconel. The cutting action provides very difficult conditions for the coolant to access the cutting zone and the level of difficulty increases with higher cutting speeds. Furthermore, high compressive stresses, strain hardening and high chemical activity results in the formation of a ‘seizure zone’ at the tool-chip interface. In this work, the impact of MQL-nanofluid at the seizure zone and the corresponding effects on tool wear, surface finish, and power consumption during machining of Ti-6Al-4V was investigated. Aluminum Oxide (Al2O3) nanoparticles were selected to use as nano-additives at different weight fraction concentrations (0, 2, and 4 wt.%). It was observed that under pure MQL strategy there was significant material adhesion on the rake face of the tool while the adhesion was reduced in the presence of MQL-nanofluid at the tool-chip interface, thus indicating a reduction in the tool chip contact length (TCCL) and reduced seizure effect. Furthermore, the flank wear varied from 0.162 to 0.561 mm and the average surface roughness (Ra) varied from 0.512 to 2.81 µm. The results indicate that the nanoparticle concentration and the reduction in the seizure zone positively influence the tool life and quality of surface finish.


Coatings ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 315 ◽  
Author(s):  
Ali Salimian ◽  
Roohollah Haghpanahan ◽  
Abul Hasnath ◽  
Hari Upadhyaya

The photometric properties of an radio frequency (RF)-based sputtering plasma source were monitored through optical spectroscopy. The colour of the plasma source was deduced based on conventional chromaticity index analysis and it was compared to the direct spectral data plots of the emission peaks to investigate the possibility of characterising the plasma based on its specific colour and exploring the potential of defining a new method by which the plasma sputtering process can be addressed based on the plasma colour parameters. The intention of this investigation is to evaluate the possibility of simplifying the monitoring and assessment of the sputtering process for applied scientists operating plasma sputter deposition systems. We demonstrate a viable potential for this technique in terms of providing information regarding the stability of the plasma, chamber pressure, and plasma power; however, further work is underway to verify and assess a relationship between the quality of the thin film coating and the colour characteristics of the deposition plasma. Here, we only focus on the feasibility of such an approach and demonstrate interesting observations. We observed a linear relationship between the colour functions and the plasma power, while the stability of the sputtering plasma can be assessed based on the plasma colour functions. The colour functions also follow a unique pattern when the working gas pressure is increased.


Sign in / Sign up

Export Citation Format

Share Document