scholarly journals Role of refractory elements in near-alpha titanium alloys on high temperature mechanical properties

2020 ◽  
Vol 321 ◽  
pp. 04018
Author(s):  
Z. Huvelin ◽  
C. Gouroglian ◽  
N. Horézana ◽  
S. Naka

The effect of Tungsten (W), Tantalum (Ta) and simultaneous addition of Germanium (Ge) and Silicon (Si) on the microstructure evolution, tensile and creep properties of the near-alpha alloy Ti-5.7Al-3.9Sn-3.7Zr-0.7Nb-0.5Mo-0.35Si-0.05C have been investigated at high temperatures up to 650°C. Microstructural characterizations following solution treatment at 1050°C for 2 hours with oil quenching and aging treatment at 700°C for 2 hours followed by air cooling, highlighted that the additions of refractory elements such as W and Ta led to a decrease of both the volume fraction of the primary alpha phase (ap) and its average size. Tensile tests performed up to 650°C revealed a significant improvement in tensile strength with additions of W and Ta, even though a decrease of ductility has been also detected. Creep tests carried out at 600°C under a constant stress of 200 MPa pointed out that, refractory elements, Ge and Si have a beneficial effect on both primary and steady-state creep strain rates.

2008 ◽  
Vol 8 (2) ◽  
pp. 722-727 ◽  
Author(s):  
Tae-hyun Nam ◽  
Cheol-am Yu ◽  
Jung-min Nam ◽  
Hyun-gon Kim ◽  
Yeon-wook Kim

Microstructures and deformation behaviour of Ti-45Ni-5Cu and Ti-46Ni-5Cu alloy ribbons prepared by melt spinning were investigated by transmission electron microscopy, thermal cycling tests under constant load and tensile tests. Spherical Ti2Ni particles coherent with the B2 parent phase were observed in the alloy ribbons when the melt spinning temperature was higher than 1773 K. Average size of Ti2Ni particles in the ribbons obtained at 1873 K was 8 nm, which was smaller than that (10 nm) in the ribbons obtained at 1773 K. Volume fraction of Ti2Ni phase in the ribbons obtained at 1873 K was 40%, which was larger than that (20%) in the ribbons obtained at 1773 K. The stress required at temperatures of Af + 10 K for the stress-induced martensitic transformation increased from 93 MPa to 229 MPa and apparent elastic modulus of the B2 parent phase increased from 56 GPa to 250 GPa with increasing the melt spinning temperature from 1673 K to 1873 K in Ti-45Ni-5Cu alloy ribbons. The critical stress for slip deformation of the ribbons increased by coherent Ti2Ni particles, and thus residual elongation did not occur even at 160 MPa, while considerable plastic deformation occurred at 60 MPa in the ribbons without Ti2Ni particles. Almost perfect superelastic recovery was found in the ribbons with coherent Ti2Ni particles, while only partial superelastic recovery was observed in the ribbons without coherent Ti2Ni particles.


2010 ◽  
Vol 17 (3) ◽  
pp. 350-361
Author(s):  
C.J. Boehlert ◽  
S.C. Longanbach

AbstractUdimet 188 was subjected to thermomechanical processing (TMP) in an attempt to understand the effects of cold-rolling deformation on the microstructure and tensile-creep behavior. Commercially available sheet was cold rolled to varying amounts of deformation (between 5–35% reduction in sheet thickness) followed by a solution treatment at 1,464 K (1,191°C) for 1 h and subsequent air cooling. This sequence was repeated four times to induce a high-volume fraction of low-energy grain boundaries. The resultant microstructure was characterized using electron backscattered diffraction. The effect of the TMP treatment on the high-temperature [1,033–1,088 K (760–815°C)] creep behavior was evaluated. The measured creep stress exponents (6.0–6.8) suggested that dislocation creep was dominant at 1,033 K (760°C) for stresses ranging between 100–220 MPa. For stresses ranging between 25–100 MPa at 1,033 K (760°C), the stress exponents (2.3–2.8) suggested grain boundary sliding was dominant. A significant amount of grain boundary cracking was observed both on the surface and subsurface of deformed samples. To assess the mechanisms of crack nucleation, in situ scanning electron microscopy was performed during the elevated-temperature tensile-creep deformation. Cracking occurred preferentially along general high-angle grain boundaries (GHAB) and less than 25% of the cracks were found on low-angle grain boundaries (LAB) and coincident site lattice boundaries (CSLB). Creep rupture experiments were performed at T = 1,088 K (815°C) and σ = 165 MPa and the greatest average time-to-rupture was exhibited by the TMP sheet with the greatest fraction of LAB+CSLB. However, a clear correlation was not exhibited between the grain boundary character distribution and the minimum creep rates. The findings of this work suggest that although grain boundary engineering may be possible for this alloy, simply relating the fraction of grain boundary types to the creep resistance is not sufficient.


2004 ◽  
Vol 449-452 ◽  
pp. 549-552 ◽  
Author(s):  
Xiao Feng Sun ◽  
Feng Shi Yin ◽  
Heng Rong Guan ◽  
Zhuang Qi Hu

The tensile deformation behavior of M963 superalloy treated by various heat treatments has been studied at both room and high temperature (1173K). The result shows that the alloy treated by the standard solution treatment at 1483K for 4h followed by air-cooling has low ductility especially at 1173K. The additional aging treatment at 1123K for 16h followed by furnace cooling can recover the ductility of the alloy at 1173K, but further decrease its room temperature ductility. The TEM observation shows that the deformation mechanism varied with both the testing temperature and heat treatment. Finally, the mechanism of the aging treatment on the deformation behavior of the M963 superalloy is discussed.


Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 197
Author(s):  
Daofen Xu ◽  
Kanghua Chen ◽  
Yunqiang Chen ◽  
Songyi Chen

In this study, the continuous evolution of the second-phase particles across as-cast, homogenization, multi-directional forging (MDF), and solution-aging treatment and their effect on tensile fracture behavior of 2219 aluminum alloys with different Cu contents was examined by optical microscopy (OM), scanning electron microscopy (SEM), and tensile tests. The results showed that the microstructure of as-cast 2219 aluminum alloy consisted of the α-Al matrix, Al2Cu coarse phase, and Fe-rich impurity phase. Severe segregation of Cu existed, and eutectic networks can be observed in the ingot. With an increase in Cu content, the eutectic networks became coarsen and thicker. During the complex improved process, the refinement mechanisms were fragmentation, dissolution, and diffusion of Al2Cu particles. Most fine Al2Cu particles were fully dissolved into the matrix and partial coarse particles were still retained after solution-aging treatment. Thus, the elongations of all the samples, undergoing solution treatment followed by water quenching, increased evidently. Then, the elongations decreased slightly due to the increase of precipitates. The fractography analysis of peak aged condition samples indicated that the fracture mode was diverted from a typical inter-granular fracture to a mainly trans-granular fracture with increase in Cu content from 5.56% to 6.52%. Fracture initiation mainly occurred by original microcrack propagation and microvoid nucleation at the coarse constituents.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4256
Author(s):  
Xiao-Yan Wang ◽  
Meng Li ◽  
Zhi-Xun Wen

The as-cast alloy of nickel-based single-crystal superalloy was used as the research object. After four hours of solution treatment at 1315 °C, four cooling rates (water cooling (WC), air cooling (AC) and furnace cooling (FC1/FC2)) were used to reduce the alloy to room temperature. Four different microstructures of nickel-based superalloy material were prepared. A high-temperature tensile test at 980 °C was carried out to study the influence of various rates on the formation of the material’s microstructure and to further obtain the influence of different microstructures on the high-temperature mechanical properties of the materials. The results show that an increase of cooling rate resulted in a larger γ′ phase nucleation rate, formation of a smaller γ′ phase and a greater number. When air cooling was used, the uniformity of the γ′ phase and the coherence relationship between the γ′ phase and the γ phase were the best. At the same time, the test alloy had the best high-temperature tensile properties, and the material showed a certain degree of plasticity. TEM test results showed that the test alloy mainly blocked dislocations from traveling in the material through the strengthening effect of γ′, and that AC had the strongest hindering effect on γ′ dislocation movement.


2020 ◽  
Vol 321 ◽  
pp. 11048
Author(s):  
Ren Yong ◽  
Yang Nan ◽  
Lei Jinwen ◽  
Li Shaoqiang ◽  
Du Yuxuan

The effects of primary α phase volume fraction on the tensile properties at 400℃ of TC4 titanium alloy was studied by different solution temperature(Tβ-(10~80)℃). The effects of the thick of secondary α phase on the tensile properties at 400℃ of TC4 titanium alloy was studied by different cooling speed after solution treatment (water quench, air cooling, furnace cooling). The results show that with the decrease of primary α phase, the tensile and yield strength increase up, but the ductility has a little change. The thick of secondary α phase increases with the deceases of cooling speed after solution treatment, highest tensile and yield strength by water quench, the tensile strength of air cooling and furnace cooling were basically the same, but the yield strength of furnace cooling was 40MPa lower than air cooling. Therefore, the influence of the primary α phase volume fraction on the tensile strength at 400℃ was particularly obvious, we can control solution treatment and cooling way in combination with different requirements.


Author(s):  
V. Radmilovic ◽  
G. Thomas ◽  
R. Kilaas ◽  
N. J. Kim

During aging of Al-Li-Zr based alloys δ'(Al3Li) precipitates heterogeneously around β'(Al3Zr), forming so-called composite precipitate[l-4], that has important effects on the mechanical behavior of these alloys. As has been observed in several investigations, the addition of small amount of Zr results in a fairly large volume fraction of β' in the microstructure, and this suggests that there may be a partitioning of Li in the β'. In the present investigation, high resolution electron microscopy (HREM) and image simulation have been used to perform detailed characterization of the chemistry and structure of β' precipitate.The alloy Al-3Li-1Cu-0.5Mg-0.5Zr (wt.%) has been heat treated as follows: a) solution treatment at 550°C for 2 hours and water quenching, b) aging treatment at 150°C for 4 hours or at 200°C for 8 hours and c) 10% cold working followed by aging at 175°C for 64 hours. HREM images were taken on a JEOL ARM electron microscope operating at 400 and 800kV. Simulated HREM images of the composite δ'/β' precipitate were calculated using CEMPAS multislice program described by Kilaas[5].


2021 ◽  
Vol 1016 ◽  
pp. 1368-1373
Author(s):  
Xiao Yun Song ◽  
Wen Jun Ye ◽  
Song Xiao Hui

The microstructures and shape memory behaviors of Ti-18Nb-6Zr (at.%) alloy subjected to different heat treatments were investigated through optical microscopy (OM), X-ray diffraction (XRD), Transmission electron microscopy (TEM) and tensile tests. Recrystallization occurs in cold-rolled Ti-18Nb-6Zr alloy after solution treatment at 600~800 °C. The cooling rate after solution treatment at 800°C shows a dramatic effect on the microstructure of the alloy. The microstructures for the water quenching (WQ) and oil quenching (OQ) specimens are composed of single α'' martensite phase, while for the air cooling (AC) specimen, the microstructure consists of predominant β phase and a small amount of fine athermal ω phase. During tensile deformation, two-stage yielding is observed in the alloy subjected to 800°C/0.5h/WQ heat treatment. The stress for martensite variants reorientation and the yield stress for plastic deformation are 310MPa and 455MPa, respectievely, and the maximum shape memory strain of 3.1% is obtained with pre-strain of 6%.


2007 ◽  
Vol 345-346 ◽  
pp. 557-560 ◽  
Author(s):  
Joong Hwan Jun ◽  
Bong Koo Park ◽  
Jeong Min Kim ◽  
Ki Tae Kim ◽  
Woon Jae Jung

Influences of Ca addition on microstructures and mechanical properties at room and elevated temperatures have been investigated for Mg-1.5%Nd-1.0%RE-0.5%Zn-(0~1.0)%Ca casting alloys, on basis of experimental results from X-ray diffractometry (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS), tensile and creep tests. Microstructures of the alloys are characterized by dendritic α-(Mg) grains surrounded by Mg12Nd-Zn-(Ca) eutectic network phase. The average size of α grains decreases gradually with an increase in Ca content. At room temperature, yield strength (YS) is enhanced with increasing Ca content with a decrease in ultimate tensile strength (UTS) and elongation to fracture, whereas the Ca addition leads to greater YS and UTS at 175oC. The tensile creep strain and secondary creep rate, measured at 150 and 200oC under 100MPa for 100hrs, become lower with the increase in Ca content. The obtained tensile properties at elevated temperature demonstrate that the addition of Ca plays a role in improving high temperature mechanical properties including creep resistance for the Mg-Nd-RE-Zn-(Ca) alloys. In view of microstructural evolution, this would be attributed to the refined primary α grains and higher thermal stability of the Mg12Nd-Zn-Ca eutectic strengthening phase.


2014 ◽  
Vol 783-786 ◽  
pp. 2423-2428 ◽  
Author(s):  
Hideki Hosoda ◽  
Kenta Kasuya ◽  
Masaki Tahara ◽  
Tomonari Inamura ◽  
Shuichi Miyazaki

In order to develop new β (bcc) Ti alloys, the Ti-Fe-Sn system was focused and phase constitution, microstructure, mechanical properties of Ti-5mol%Fe-6mol%Sn and Ti-6mol%Fe-3mol%Sn were clarified in addition to aging effect. It was estimated by differential scanning calorimetry (DSC) that α phase is formed at temperature from 773-779K and that β transus temperature is 1019K in both the alloys. X-ray diffraction analysis revealed that, in both alloys, β single phase is formed after the solution treatment (ST) at 1273K followed by water quenching, while α phase is formed after the aging at 773K and 873K for 3.6ks. The formation of α phase is also confirmed by optical microscopy. The volume fraction of α phase reaches to 90% in Ti-5Fe-6Sn and 80% in Ti-6Fe-3Sn after the aging at 873K for 3.6ks. The 0.2% proof stress was increased by aging at 873K from 550MPa to 650MPa in Ti-5Fe-6Sn and 500MPa to 690MPa in Ti-6Fe-3Sn. Besides, apparent Young’s modulus measured by dynamic mechanical analysis was raised by the aging treatment. These changes in the mechanical properties were discussed in connection with α phase precipitation.


Sign in / Sign up

Export Citation Format

Share Document