scholarly journals Molecular Targets and Nanoparticulate Systems Designed for the Improved Therapeutic Intervention in Glioblastoma Multiforme

Drug Research ◽  
2020 ◽  
Author(s):  
Md. Habban Akhter ◽  
Md. Rizwanullah ◽  
Javed Ahmad ◽  
Saima Amin ◽  
Mohammad Zaki Ahmad ◽  
...  

AbstractGlioblastoma multiforme (GBM) is the most aggressive and fatal CNS related tumors, which is responsible for about 4% of cancer-related deaths. Current GBM therapy includes surgery, radiation, and chemotherapy. The effective chemotherapy of GBM is compromised by two barriers, i. e., the blood-brain barrier (BBB) and the blood tumor barrier (BTB). Therefore, novel therapeutic approaches are needed. Nanoparticles are one of the highly efficient drug delivery systems for a variety of chemotherapeutics that have gained massive attention from the last three decades. Perfectly designed nanoparticles have the ability to cross BBB and BTB and precisely deliver the chemotherapeutics to GBM tissue/cells. Nanoparticles can encapsulate both hydrophilic and lipophilic drugs, genes, proteins, and peptides, increase the stability of drugs by protecting them from degradation, improve plasma half-life, reduce adverse effects and control the release of drugs/genes at the desired site. This review focussed on the different signaling pathways altered in GBM cells to understand the rationale behind selecting new therapeutic targets, challenges in the drug delivery to the GBM, various transport routes in brain delivery, and recent advances in targeted delivery of different drug and gene loaded various lipidic, polymeric and inorganic nanoparticles in the effective management of GBM.

2021 ◽  
Vol 22 (4) ◽  
pp. 1776
Author(s):  
Elham Pishavar ◽  
Hongrong Luo ◽  
Johanna Bolander ◽  
Antony Atala ◽  
Seeram Ramakrishna

Progenitor cells derived from the retinal pigment epithelium (RPECs) have shown promise as therapeutic approaches to degenerative retinal disorders including diabetic retinopathy, age-related macular degeneration and Stargardt disease. However, the degeneration of Bruch’s membrane (BM), the natural substrate for the RPE, has been identified as one of the major limitations for utilizing RPECs. This degeneration leads to decreased support, survival and integration of the transplanted RPECs. It has been proposed that the generation of organized structures of nanofibers, in an attempt to mimic the natural retinal extracellular matrix (ECM) and its unique characteristics, could be utilized to overcome these limitations. Furthermore, nanoparticles could be incorporated to provide a platform for improved drug delivery and sustained release of molecules over several months to years. In addition, the incorporation of tissue-specific genes and stem cells into the nanostructures increased the stability and enhanced transfection efficiency of gene/drug to the posterior segment of the eye. This review discusses available drug delivery systems and combination therapies together with challenges associated with each approach. As the last step, we discuss the application of nanofibrous scaffolds for the implantation of RPE progenitor cells with the aim to enhance cell adhesion and support a functionally polarized RPE monolayer.


2021 ◽  
Vol 27 ◽  
Author(s):  
Bapi Gorain ◽  
Bandar E. Al-Dhubiab ◽  
Anroop Nair ◽  
Prashant Kesharwani ◽  
Manisha Pandey ◽  
...  

: The advancement of delivery tools for therapeutic agents has brought several novel formulations with increased drug loading, sustained release, targeted delivery, and prolonged efficacy. Amongst the several novel delivery approaches, multivesicular liposome has gained potential interest because this delivery system possesses the above advantages. In addition, this multivesicular liposomal delivery prevents degradation of the entrapped drug within the physiological environment while administered. The special structure of the vesicles allowed successful entrapment of hydrophobic and hydrophilic therapeutic agents, including proteins and peptides. Furthermore, this novel formulation could maintain the desired drug concentration in the plasma for a prolonged period, which helps to reduce the dosing frequencies, improve bioavailability, and safety. This tool could also provide stability of the formulation, and finally gaining patient compliance. Several multivesicular liposomes received approval for clinical research, while others are at different stages of laboratory research. In this review, we have focused on the preparation of multivesicular liposomes along with their application in different ailments for the improvement of the performance of the entrapped drug. Moreover, the challenges of delivering multivesicular vesicles have also been emphasized. Overall, it could be inferred that multivesicular liposomal delivery is a novel platform of advanced drug delivery with improved efficacy and safety.


2020 ◽  
Vol 2020 ◽  
pp. 1-31
Author(s):  
Antonio Vassallo ◽  
Maria Francesca Silletti ◽  
Immacolata Faraone ◽  
Luigi Milella

Today’s human society, product of decades of progress in all fields of knowledge, would have been unimaginable without the discovery of antibiotics and more generally of antimicrobials. However, from the beginning, the scientific community was aware that microorganisms through various strategies were able to hinder and render vain antibiotic action. Common examples are the phenomena of persistence, tolerance, and resistance, up to the creation of the feared bacterial biofilms. Antibiotics are a precious but equally labile resource that must be preserved but at the same time reinforced to safeguard their effectiveness. Nanoparticulate systems such as nanobactericides, with their inherent antibacterial activity, and nanocarriers, which operate as drug delivery systems for conventional antibiotics, are innovative therapies made available by nanotechnology. Inorganic nanoparticles are effective both as nanobactericides (AgNPs, ZnONPs, and TiO2NPs) and as nanocarriers (AgNPs, AuNPs, ZnONPs, and TiO2NPs) against sensitive and multi-drug-resistant bacterial strains. Liposomes are among the most studied and flexible antibiotic delivery platforms: conventional liposomes allow passive targeting at the mononuclear phagocytic system (MPS); “stealth” liposomes prevent macrophage uptake so as to eradicate infections in tissues and organs outside MPS; thanks to their positive charge, cationic liposomes interact preferentially with bacterial and biofilm surfaces, acting as innate antibacterials as well as drug delivery systems (DDS); fusogenic liposomes have fluid bilayers that promote fusion with microbial membranes; and finally, ligand-targeted liposomes provide active targeting at infection sites. Dendrimers are among the most recent and attractive nanoparticulate systems, thanks to their multibranched nanoarchitecture, which equipped them with multiple active sites for loading antibiotics and also interacting with bacteria. Finally, nanoantibiotics represent a new hopeful generation of antibiotic candidates capable of increasing or even restoring the clinical efficacy of “old” antibiotics rendered useless by the resistance phenomena.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoqing Sang ◽  
Yuanyuan Wang ◽  
Zhifeng Xue ◽  
Dawei Qi ◽  
Guanwei Fan ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is serious chronic lung disease with limited therapeutic approaches. Inflammation and immune disorders are considered as the main factors in the initiation and development of pulmonary fibrosis. Inspired by the key roles of macrophages during the processes of inflammation and immune disorders, here, we report a new method for direct drug delivery into the in-situ fibrotic tissue sites in vitro and in vivo. First, liposomes containing dexamethasone (Dex-L) are prepared and designed to entry into the macrophages in the early hours, forming the macrophages loaded Dex-L delivery system (Dex-L-MV). Chemokine and cytokine factors such as IL-6, IL-10, Arg-1 are measured to show the effect of Dex-L to the various subtypes of macrophages. Next, we mimic the inflammatory and anti-inflammatory microenvironment by co-culture of polarized/inactive macrophage and fibroblast cells to show the acute inflammation response of Dex-L-MV. Further, we confirm the targeted delivery of Dex-L-MV into the inflammatory sites in vivo, and surprisingly found that injected macrophage containing Dex can reduce the level of macrophage infiltration and expression of the markers of collagen deposition during the fibrotic stage, while causing little systematic toxicity. These data demonstrated the suitability and immune regulation effect of Dex-L-MV for the anti-pulmonary process. It is envisaged that these findings are a step forward toward endogenous immune targeting systems as a tool for clinical drug delivery.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1605 ◽  
Author(s):  
Xavier Montané ◽  
Anna Bajek ◽  
Krzysztof Roszkowski ◽  
Josep M. Montornés ◽  
Marta Giamberini ◽  
...  

The current rapid advancement of numerous nanotechnology tools is being employed in treatment of many terminal diseases such as cancer. Nanocapsules (NCs) containing an anti-cancer drug offer a very promising alternative to conventional treatments, mostly due to their targeted delivery and precise action, and thereby they can be used in distinct applications: as biosensors or in medical imaging, allowing for cancer detection as well as agents/carriers in targeted drug delivery. The possibility of using different systems—inorganic nanoparticles, dendrimers, proteins, polymeric micelles, liposomes, carbon nanotubes (CNTs), quantum dots (QDs), biopolymeric nanoparticles and their combinations—offers multiple benefits to early cancer detection as well as controlled drug delivery to specific locations. This review focused on the key and recent progress in the encapsulation of anticancer drugs that include methods of preparation, drug loading and drug release mechanism on the presented nanosystems. Furthermore, the future directions in applications of various nanoparticles are highlighted.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 195
Author(s):  
Jen-Fu Hsu ◽  
Shih-Ming Chu ◽  
Chen-Chu Liao ◽  
Chao-Jan Wang ◽  
Yi-Shan Wang ◽  
...  

Glioblastoma multiforme (GBM) is the most common and malignant brain tumor with poor prognosis. The heterogeneous and aggressive nature of GBMs increases the difficulty of current standard treatment. The presence of GBM stem cells and the blood brain barrier (BBB) further contribute to the most important compromise of chemotherapy and radiation therapy. Current suggestions to optimize GBM patients’ outcomes favor controlled targeted delivery of chemotherapeutic agents to GBM cells through the BBB using nanoparticles and monoclonal antibodies. Nanotechnology and nanocarrier-based drug delivery have recently gained attention due to the characteristics of biosafety, sustained drug release, increased solubility, and enhanced drug bioactivity and BBB penetrability. In this review, we focused on recently developed nanoparticles and emerging strategies using nanocarriers for the treatment of GBMs. Current studies using nanoparticles or nanocarrier-based drug delivery system for treatment of GBMs in clinical trials, as well as the advantages and limitations, were also reviewed.


2020 ◽  
Vol 18 ◽  
Author(s):  
Leonardo Delello Di Filippo ◽  
Jonatas Lobato Duarte ◽  
Marcela Tavares Luiz ◽  
Jennifer Thayane Cavalcante de Araújo ◽  
Marlus Chorilli

: Glioblastoma multiforme (GBM) is the most common primary malignant Central Nervous System cancer, responsible for about 4% of all deaths associated with neoplasia, characterized as one of the most fatal human cancers. Tumor resection does not possess curative character, thereby radio and/or chemotherapy are often necessary for the treatment of GBM. However, drugs used in GBM chemotherapy present some limitations, such as side effects associated with nonspecific drug biodistribution as well as limited bioavailability, which limits their clinical use. To attenuate the systemic toxicity and overcome the poor bioavailability, a very attractive approach is drug encapsulation in drug delivery nanosystems. The main focus of this review is to explore the actual cancer global problem, enunciate barriers to overcome in the pharmacological treatment of GBM, as well as the most updated drug delivery nanosystems for GBM treatment and how they influence biopharmaceutical properties of anti-GBM drugs. The discussion will approach lipid-based and polymeric nanosystems, as well as inorganic nanoparticles, regarding their technical aspects as well as biological effects in GBM treatment. Furthermore, the current state of the art, challenges to overcome and future perspectives in GBM treatment will be discussed.


2020 ◽  
Vol 4 (6) ◽  
pp. 645-675
Author(s):  
Parasuraman Padmanabhan ◽  
Mathangi Palanivel ◽  
Ajay Kumar ◽  
Domokos Máthé ◽  
George K. Radda ◽  
...  

Neurodegenerative diseases (NDDs), including Alzheimer's disease (AD) and Parkinson's disease (PD), affect the ageing population worldwide and while severely impairing the quality of life of millions, they also cause a massive economic burden to countries with progressively ageing populations. Parallel with the search for biomarkers for early detection and prediction, the pursuit for therapeutic approaches has become growingly intensive in recent years. Various prospective therapeutic approaches have been explored with an emphasis on early prevention and protection, including, but not limited to, gene therapy, stem cell therapy, immunotherapy and radiotherapy. Many pharmacological interventions have proved to be promising novel avenues, but successful applications are often hampered by the poor delivery of the therapeutics across the blood-brain-barrier (BBB). To overcome this challenge, nanoparticle (NP)-mediated drug delivery has been considered as a promising option, as NP-based drug delivery systems can be functionalized to target specific cell surface receptors and to achieve controlled and long-term release of therapeutics to the target tissue. The usefulness of NPs for loading and delivering of drugs has been extensively studied in the context of NDDs, and their biological efficacy has been demonstrated in numerous preclinical animal models. Efforts have also been made towards the development of NPs which can be used for targeting the BBB and various cell types in the brain. The main focus of this review is to briefly discuss the advantages of functionalized NPs as promising theranostic agents for the diagnosis and therapy of NDDs. We also summarize the results of diverse studies that specifically investigated the usage of different NPs for the treatment of NDDs, with a specific emphasis on AD and PD, and the associated pathophysiological changes. Finally, we offer perspectives on the existing challenges of using NPs as theranostic agents and possible futuristic approaches to improve them.


Author(s):  
Azadi A. ◽  
Khazaei M. ◽  
Ashrafi H.

Cancer, an uncontrollable growth of cells, is among the leading causes of mortality and morbidity throughout the world. Malignant neoplasms are difficult to treat diseases because of their single in kind characteristics such as tissue invasion, metastasis, evading reticuloendothelial system (RES) and so forth. In recent decade polymeric nanoparticulate systems has gained special attention in drug delivery and targeting among all biocompatible nanoforms. Among these systems, chitosan-based hydrogel nanoparticles have been wildly utilized for drug delivery purposes. The usage of chitosan nanogels in cancer therapy significantly improved in recent years. The various cancers were the target of chitosan nanogels. Also, modification of other delivery systems with chitosan were much reported. The aim of this study is the review and update of the recent studies on chitosan nanogels applications in cancer therapy by focus on cancer based classification.


Author(s):  
Manju Rawat ◽  
Swarnlata Saraf

Currently, drug delivery technologies for protein and peptide delivery mainly rely on biodegradable polymers. However, protein stability during release from these systems can be critical due to physical and chemical instabilities. Lipospheres are solid microparticles composed of fat core stabilized by phospholipids layer represent an alternative carrier for the delivery of highly challenging, labile and unstable  substances. This review highlights various aspects of lipospheres like physicochemical characteristics and stability for better clinical utility with a wider spectrum of proteins and peptides.


Sign in / Sign up

Export Citation Format

Share Document