Mechanisms of Pharmacoresistance in Hepatocellular Carcinoma: New Drugs but Old Problems

Author(s):  
Jose J.G. Marin ◽  
Marta R. Romero ◽  
Elisa Herraez ◽  
Maitane Asensio ◽  
Sara Ortiz-Rivero ◽  
...  

AbstractHepatocellular carcinoma (HCC) is a malignancy with poor prognosis when diagnosed at advanced stages in which curative treatments are no longer applicable. A small group of these patients may still benefit from transarterial chemoembolization. The only therapeutic option for most patients with advanced HCC is systemic pharmacological treatments based on tyrosine kinase inhibitors (TKIs) and immunotherapy. Available drugs only slightly increase survival, as tumor cells possess additive and synergistic mechanisms of pharmacoresistance (MPRs) prior to or enhanced during treatment. Understanding the molecular basis of MPRs is crucial to elucidate the genetic signature underlying HCC resistome. This will permit the selection of biomarkers to predict drug treatment response and identify tumor weaknesses in a personalized and dynamic way. In this article, we have reviewed the role of MPRs in current first-line drugs and the combinations of immunotherapeutic agents with novel TKIs being tested in the treatment of advanced HCC.

2017 ◽  
Vol 44 (2) ◽  
pp. 716-727 ◽  
Author(s):  
Ting Sun ◽  
Hongchun Liu ◽  
Liang Ming

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide, and prognosis remains unsatisfactory since the disease is often diagnosed at the advanced stages. Currently, the multikinase inhibitor sorafenib is the only drug approved for the treatment of advanced HCC. However, primary or acquired resistance to sorafenib develops, generating a roadblock in HCC therapy. Autophagy is an intracellular lysosomal pathway involved in protein and organelle degradation, with an astonishing number of connections to human disease and physiology. Current understanding of the role of autophagy in the progression of cancer and the response to cancer therapy remains controversial. Sorafenib is able to induce autophagy in HCC, but the effect of autophagy is indistinct. Some studies established that sorafenib-induced autophagy serves as a pro-survival response. However, other studies found that sorafenib-induced autophagy improves the lethality of sorafenib against HCC cells. The mechanisms underlying autophagy and sorafenib resistance remain elusive. The purpose of this review is to summarize the progress of research focused on autophagy and sorafenib resistance and to update current knowledge of how cellular autophagy impacts sorafenib sensitivity in HCC treatment.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xinyao Hu ◽  
Hua Zhu ◽  
Yang Shen ◽  
Xiaoyu Zhang ◽  
Xiaoqin He ◽  
...  

Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related death. Sorafenib is approved by the U.S. Food and Drug Administration to be a first-line chemotherapy agent for patients with advanced HCC. A portion of advanced HCC patients can benefit from the treatment with sorafenib, but many patients ultimately develop sorafenib resistance, leading to a poor prognosis. The molecular mechanisms of sorafenib resistance are sophisticated and indefinite. Notably, non-coding RNAs (ncRNAs), which include long ncRNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs), are critically participated in the occurrence and progression of tumors. Moreover, growing evidence has suggested that ncRNAs are crucial regulators in the development of resistance to sorafenib. Herein, we integrally and systematically summarized the molecular mechanisms and vital role of ncRNAs impact sorafenib resistance of HCC, and ultimately explored the potential clinical administrations of ncRNAs as new prognostic biomarkers and therapeutic targets for HCC.


Medicina ◽  
2019 ◽  
Vol 55 (12) ◽  
pp. 754 ◽  
Author(s):  
Antonio Gnoni ◽  
Antonella Licchetta ◽  
Riccardo Memeo ◽  
Antonella Argentiero ◽  
Antonio G. Solimando ◽  
...  

The few therapeutic strategies for advance hepatocellular carcinoma (HCC) on poor knowledge of its biology. For several years, sorafenib, a tyrosine kinase inhibitors (TKI) inhibitor, has been the approved treatment option, to date, for advanced HCC patients. Its activity is the inhibition of the retrovirus-associated DNA sequences protein (RAS)/Rapidly Accelerated Fibrosarcoma protein (RAF)/mitogen-activated and extracellular-signal regulated kinase (MEK)/extracellular-signal regulated kinases (ERK) signaling pathway. However, the efficacy of sorafenib is limited by the development of drug resistance, and the major neuronal isoform of RAF, BRAF and MEK pathways play a critical and central role in HCC escape from TKIs activity. Advanced HCC patients with a BRAF mutation display a multifocal and/or more aggressive behavior with resistance to TKI. Moreover, also long non-coding RNA (lnc-RNA) have been studied in epigenetic studies for BRAF aggressiveness in HCC. So far, lnc-RNA of BRAF could be another mechanism of cancer proliferation and TKI escape in HCC and the inhibition could become a possible strategy treatment for HCC. Moreover, recent preclinical studies and clinical trials evidence that combined treatments, involving alternative pathways, have an important role of therapy for HCC and they could bypass resistance to the following TKIs: MEK, ERKs/ribosomal protein S6 kinase 2 (RSK2), and phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR). These initial data must be confirmed in clinical studies, which are currently ongoing. Translational research discoveries could create new strategies of targeted therapy combinations, including BRAF pathway, and they could eventually bring light in new treatment of HCC.


2020 ◽  
Vol 7 (2) ◽  
pp. 205-211
Author(s):  
Kaynat Fatima ◽  
Syed Tasleem Raza ◽  
Ale Eba ◽  
Sanchita Srivastava ◽  
Farzana Mahdi

The function of protein kinases is to transfer a γ-phosphate group from ATP to serine, threonine, or tyrosine residues. Many of these kinases are linked to the initiation and development of human cancer. The recent development of small molecule kinase inhibitors for the treatment of different types of cancer in clinical therapy has proven successful. Significantly, after the G-protein-coupled receptors, protein kinases are the second most active category of drug targets. Imatinib mesylate was the first tyrosine kinase inhibitor (TKI), approved for chronic myeloid leukemia (CML) treatment. Imatinib induces appropriate responses in ~60% of patients; with ~20% discontinuing therapy due to sensitivity, and ~20% developing drug resistance. The introduction of newer TKIs such as, nilotinib, dasatinib, bosutinib, and ponatinib has provided patients with multiple options. Such agents are more active, have specific profiles of side effects and are more likely to reach the necessary milestones. First-line treatment decisions must be focused on CML risk, patient preferences and comorbidities. Given the excellent result, half of the patients eventually fail to seek first-line treatment (due to discomfort or resistance), with many of them needing a third or even further therapy lines. In the present review, we will address the role of tyrosine kinase inhibitors in therapy for chronic myeloid leukemia.


2021 ◽  
Vol 11 (3) ◽  
pp. 219
Author(s):  
Ya-Ling Yang ◽  
Yen-Hsiang Chang ◽  
Chia-Jung Li ◽  
Ying-Hsien Huang ◽  
Ming-Chao Tsai ◽  
...  

Hepatocellular carcinoma (HCC) remains one of the most lethal human cancer globally. For advanced HCC, curable plan for advanced HCC is yet to be established, and the prognosis remains poor. The detail mechanisms underlying the progression of HCC tumorigenicity and the corruption of tumor microenvironment (TME) is complex and inconclusive. A growing body of studies demonstrate microRNAs (miRs) are important regulators in the tumorigenicity and TME development. Notably, mounting evidences indicate miR-29a play a crucial role in exerting hepatoprotective effect on various types of stress and involved in the progression of HCC, which elucidates their potential theragnostic implications. In this review, we reviewed the advanced insights into the detail mechanisms by which miR-29a dictates carcinogenesis, epigenetic program, and metabolic adaptation, and implicated in the sponging activity of competitive endogenous RNAs (ceRNA) and the TME components in the scenario of HCC. Furthermore, we highlighted its clinical significance in diagnosis and prognosis, as well as the emerging therapeutics centered on the activation of miR-29a.


2021 ◽  
Vol 11 (5) ◽  
pp. 332
Author(s):  
Szu-Jen Wang ◽  
Pei-Ming Yang

Hepatocellular carcinoma (HCC) is a relatively chemo-resistant tumor. Several multi-kinase inhibitors have been approved for treating advanced HCC. However, most HCC patients are highly refractory to these drugs. Therefore, the development of more effective therapies for advanced HCC patients is urgently needed. Stathmin 1 (STMN1) is an oncoprotein that destabilizes microtubules and promotes cancer cell migration and invasion. In this study, cancer genomics data mining identified STMN1 as a prognosis biomarker and a therapeutic target for HCC. Co-expressed gene analysis indicated that STMN1 expression was positively associated with cell-cycle-related gene expression. Chemical sensitivity profiling of HCC cell lines suggested that High-STMN1-expressing HCC cells were the most sensitive to MST-312 (a telomerase inhibitor). Drug–gene connectivity mapping supported that MST-312 reversed the STMN1-co-expressed gene signature (especially BUB1B, MCM2/5/6, and TTK genes). In vitro experiments validated that MST-312 inhibited HCC cell viability and related protein expression (STMN1, BUB1B, and MCM5). In addition, overexpression of STMN1 enhanced the anticancer activity of MST-312 in HCC cells. Therefore, MST-312 can be used for treating STMN1-high expression HCC.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Olga Simó-Servat ◽  
Rafael Simó ◽  
Cristina Hernández

Diabetic retinopathy (DR) is the main cause of working-age adult-onset blindness. The currently available treatments for DR are applicable only at advanced stages of the disease and are associated with significant adverse effects. In early stages of DR the only therapeutic strategy that physicians can offer is a tight control of the risk factors for DR. Therefore, new pharmacological treatments for these early stages of the disease are required. In order to develop therapeutic strategies for early stages of DR new diagnostic tools are urgently needed. In this regard, circulating biomarkers could be useful to detect early disease, to identify those diabetic patients most prone to progressive worsening who ought to be followed up more often and who could obtain the most benefit from these therapies, and to monitor the effectiveness of new drugs for DR before more advanced DR stages have been reached. Research of biomarkers for DR has been mainly based on the pathogenic mechanism involved in the development of DR (i.e., AGEs, oxidative stress, endothelial dysfunction, inflammation, and proangiogenic factors). This review focuses on circulating biomarkers at both early and advanced stages that could be relevant for the prediction or detection of DR.


2020 ◽  
Vol 21 (17) ◽  
pp. 6302
Author(s):  
Michela Guardascione ◽  
Giuseppe Toffoli

In advanced-stage hepatocellular carcinoma (HCC), systemic treatment represents the standard therapy. Target therapy has marked a new era based on a greater knowledge of molecular disease signaling. Nonetheless, survival outcomes and long-term response remain unsatisfactory, mostly because of the onset of primary or acquired resistance. More recently, results from clinical trials with immune targeting agents, such as the immune checkpoint inhibitors (ICIs), have shown a promising role for these drugs in the treatment of advanced HCC. In the context of an intrinsic tolerogenic liver environment, since HCC-induced immune tolerance, it is supported by multiple immunosuppressive mechanisms and several clinical trials are now underway to evaluate ICI-based combinations, including their associations with antiangiogenic agents or multikinase kinase inhibitors and multiple ICIs combinations. In this review, we will first discuss the basic principles of hepatic immunogenic tolerance and the evasive mechanism of antitumor immunity in HCC; furthermore we will elucidate the consistent biological rationale for immunotherapy in HCC even in the presence of an intrinsic tolerogenic environment. Subsequently, we will critically report and discuss current literature on ICIs in the treatment of advanced HCC, including a focus on the currently explored combinatorial strategies and their rationales. Finally, we will consider both challenges and future directions in this field.


Medicina ◽  
2019 ◽  
Vol 55 (10) ◽  
pp. 707 ◽  
Author(s):  
Oronzo Brunetti ◽  
Antonio Gnoni ◽  
Antonella Licchetta ◽  
Vito Longo ◽  
Angela Calabrese ◽  
...  

Sorafenib is an oral kinase inhibitor that enhances survival in patients affected by advanced hepatocellular carcinoma (HCC). According to the results of two registrative trials, this drug represents a gold quality standard in the first line treatment of advanced HCC. Recently, lenvatinib showed similar results in terms of survival in a non-inferiority randomized trial study considering the same subset of patients. Unlike other targeted therapies, predictive and prognostic markers in HCC patients treated with sorafenib are lacking. Their identification could help clinicians in the daily management of these patients, mostly in light of the new therapeutic options available in the first.


2018 ◽  
Vol 18 (5) ◽  
pp. 430-441 ◽  
Author(s):  
Massimiliano Berretta ◽  
Carmela Romano ◽  
Raffaele Di Francia ◽  
Chiara De Diviitis ◽  
Vincenzo Canzonieri ◽  
...  

Gastrointestinal (GI) tumors are among the leading cause of death in cancer patients worldwide. Particularly, gastric cancer (GC) is the third cause of cancer deaths, whereas esophageal neoplasm is the eighth leading most common cancer worldwide and its incidence, especially adenocarcinoma type, is continuously increasing. Also, Hepatocellular carcinoma, Cholangiocarcinoma and pancreatic cancer represent a very interesting model to multidisciplinary approach and recently new drugs are used in their treatment. Currently, new clinical trials are designed including classic chemotherapy in association with either small molecule inhibitors (i.e. Tyrosine Kinase inhibitors) and/or monoclonal antibody (i.e. anti-EGFR antibody). Moreover, a comprehensive list of new molecules for target therapy is included in this issue. The development of new treatment modalities (multidisciplinary approach) and targeted therapy approaches have contributed to improving the outcome in these cancer diseases. During the past few years, remarkable progress in molecular biology of malignancy, the discovery of specific targets, and the resulting development of systemic drugs that block critical kinases and several molecular pathways have all contributed to progress in cancer treatment, also in GI non-colorectal cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document