Minimizing Lateral Displacement of Clayey Deposit under Combined Vacuum and Surcharge Loads

Author(s):  
Steeva Gaily Rondonuwu ◽  
Jinchun Chai ◽  
Akinori Saito
Keyword(s):  
Actuators ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 73
Author(s):  
Osman Hansu ◽  
Esra Mete Güneyisi

This study addresses an alternative use of viscous dampers (VDs) associated with buckling restrained braces (BRBs) as innovative seismic protection devices. For this purpose, 4-, 8- and 12-story steel bare frames were designed with 6.5 m equal span length and 4 m story height. Thereafter, they were seismically improved by mounting the VDs and BRBs in three patterns, namely outer bays, inner bays, and all bays over the frame heights. The structures were modeled using SAP 2000 software and evaluated by the nonlinear time history analyses subjected to the six natural ground motions. The seismic responses of the structures were investigated for the lateral displacement, interstory drift, absolute acceleration, maximum base shear, and time history of roof displacement. The results clearly indicated that the VDs and BRBs reduced seismic demands significantly compared to the bare frame. Moreover, the all-bay pattern performed better than the others.


Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 60
Author(s):  
Eun-Hyuk Lee ◽  
Sang-Hoon Kim ◽  
Kwang-Seok Yun

Haptic displays have been developed to provide operators with rich tactile information using simple structures. In this study, a three-axis tactile actuator capable of thermal display was developed to deliver tactile senses more realistically and intuitively. The proposed haptic display uses pneumatic pressure to provide shear and normal tactile pressure through an inflation of the balloons inherent in the device. The device provides a lateral displacement of ±1.5 mm for shear haptic feedback and a vertical inflation of the balloon of up to 3.7 mm for normal haptic feedback. It is designed to deliver thermal feedback to the operator through the attachment of a heater to the finger stage of the device, in addition to mechanical haptic feedback. A custom-designed control module is employed to generate appropriate haptic feedback by computing signals from sensors or control computers. This control module has a manual gain control function to compensate for the force exerted on the device by the user’s fingers. Experimental results showed that it could improve the positional accuracy and linearity of the device and minimize hysteresis phenomena. The temperature of the device could be controlled by a pulse-width modulation signal from room temperature to 90 °C. Psychophysical experiments show that cognitive accuracy is affected by gain, and temperature is not significantly affected.


2020 ◽  
Vol 68 (10) ◽  
pp. 880-892
Author(s):  
Youguo He ◽  
Xing Gong ◽  
Chaochun Yuan ◽  
Jie Shen ◽  
Yingkui Du

AbstractThis paper proposes a lateral lane change obstacle avoidance constraint control simulation algorithm based on the driving behavior recognition of the preceding vehicles in adjacent lanes. Firstly, the driving behavior of the preceding vehicles is recognized based on the Hidden Markov Model, this research uses longitudinal velocity, lateral displacement and lateral velocity as the optimal observation signals to recognize the driving behaviors including lane-keeping, left-lane-changing or right-lane-changing; Secondly, through the simulation of the dangerous cutting-in behavior of the preceding vehicles in adjacent lanes, this paper calculates the ideal front wheel steering angle according to the designed lateral acceleration in the process of obstacle avoidance, designs the vehicle lateral motion controller by combining the backstepping and Dynamic Surface Control, and the safety boundary of the lateral motion is constrained based on the Barrier Lyapunov Function; Finally, simulation model is built, and the simulation results show that the designed controller has good performance. This active safety technology effectively reduces the impact on the autonomous vehicle safety when the preceding vehicle suddenly cuts into the lane.


2021 ◽  
Vol 11 (7) ◽  
pp. 2919
Author(s):  
Massamba Fall ◽  
Zhengguo Gao ◽  
Becaye Cissokho Ndiaye

A pile foundation is commonly adopted for transferring superstructure loads into the ground in weaker soil. They diminish the settlement of the infrastructure and augment the soil-bearing capacity. This paper emphases the pile-driving effect on an existing adjacent cylindrical and semi-tapered pile. Driving a three-dimensional pile into the ground is fruitfully accomplished by combining the arbitrary Lagrangian–Eulerian (ALE) adaptive mesh and element deletion methods without adopting any assumptions that would simplify the simulation. Axial forces, bending moment, and lateral displacement were studied in the neighboring already-installed pile. An investigation was made into some factors affecting the forces and bending moment, such as pile spacing and the shape of the already-installed pile (cylindrical, tapered, or semi-tapered). An important response was observed in the impact of the driven pile on the nearby existing one, the bending moment and axial forces were not negligible, and when the pile was loaded, it was recommended to consider the coupling effect. Moreover, the adjacent semi-tapered pile was subjected to less axial and lateral movement than the cylindrical one with the same length and volume for taper angles smaller than 1.0°, and vice versa for taper angles greater than 1.4°.


Biosensors ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 263
Author(s):  
Tianlong Zhang ◽  
Yigang Shen ◽  
Ryota Kiya ◽  
Dian Anggraini ◽  
Tao Tang ◽  
...  

Continuous microfluidic focusing of particles, both synthetic and biological, is significant for a wide range of applications in industry, biology and biomedicine. In this study, we demonstrate the focusing of particles in a microchannel embedded with glass grooves engraved by femtosecond pulse (fs) laser. Results showed that the laser-engraved microstructures were capable of directing polystyrene particles and mouse myoblast cells (C2C12) towards the center of the microchannel at low Reynolds numbers (Re < 1). Numerical simulation revealed that localized side-to-center secondary flows induced by grooves at the channel bottom play an essential role in particle lateral displacement. Additionally, the focusing performance proved to be dependent on the angle of grooves and the middle open space between the grooves based on both experiments and simulation. Particle sedimentation rate was found to critically influence the focusing of particles of different sizes. Taking advantage of the size-dependent particle lateral displacement, selective focusing of micrometer particles was demonstrated. This study systematically investigated continuous particle focusing in a groove-embedded microchannel. We expect that this device will be used for further applications, such as cell sensing and nanoparticle separation in biological and biomedical areas.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2486
Author(s):  
Gert Behrends ◽  
Dirk Stöbener ◽  
Andreas Fischer

Lateral scanning white light interferometry (LSWLI) is a promising technique for high-resolution topography measurements on moving surfaces. To achieve resolutions typically associated with white light interferometry, accurate information on the lateral displacement of the measured surface is essential. Since the uncertainty requirement for a respective displacement measurement is currently not known, Monte Carlo simulations of LSWLI measurements are carried out at first to assess the impact of the displacement uncertainty on the topography measurement. The simulation shows that the uncertainty of the displacement measurement has a larger influence on the total height uncertainty than the uncertainty of the displacing motion itself. Secondly, a sufficiently precise displacement measurement by means of digital speckle correlation (DSC) is proposed that is fully integrated into the field of view of the interferometer. In contrast to externally applied displacement measurement systems, the integrated combination of DSC with LSWLI needs no synchronization and calibration, and it is applicable for translatory as well as rotatory scans. To demonstrate the findings, an LSWLI setup with integrated DSC measurements is realized and tested on a rotating cylindrical object with a surface made of a linear encoder strip.


1999 ◽  
Vol 45 (150) ◽  
pp. 370-383 ◽  
Author(s):  
Kim Morris ◽  
Shusun Li ◽  
Martin Jeffries

Abstract Synthetic aperture radar- (SAR-)derived ice-motion vectors and SAR interferometry were used to study the sea-ice conditions in the region between the coast and 75° N (~ 560 km) in the East Siberian Sea in the vicinity of the Kolyma River. ERS-1 SAR data were acquired between 24 December 1993 and 30 March 1994 during the 3 day repeat Ice Phase of the satellite. The time series of the ice-motion vector fields revealed rapid (3 day) changes in the direction and displacement of the pack ice. Longer-term (≥ 1 month) trends also emerged which were related to changes in large-scale atmospheric circulation. On the basis of this time series, three sea-ice zones were identified: the near-shore, stationary-ice zone; a transitional-ice zone;and the pack-ice zone. Three 3 day interval and one 9 day interval interferometric sets (amplitude, correlation and phase diagrams) were generated for the end of December, the begining of February and mid-March. They revealed that the stationary-ice zone adjacent to the coast is in constant motion, primarily by lateral displacement, bending, tilting and rotation induced by atmospheric/oceanic forcing. The interferogram patterns change through time as the sea ice becomes thicker and a network of cracks becomes established in the ice cover. It was found that the major features in the interferograms were spatially correlated with sea-ice deformation features (cracks and ridges) and major discontinuities in ice thickness.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiziana Sgroi ◽  
Alina Polonia ◽  
Graziella Barberi ◽  
Andrea Billi ◽  
Luca Gasperini

AbstractThe Calabrian Arc subduction-rollback system along the convergent Africa/Eurasia plate boundary is among the most active geological structures in the Mediterranean Sea. However, its seismogenic behaviour is largely unknown, mostly due to the lack of seismological observations. We studied low-to-moderate magnitude earthquakes recorded by the seismic network onshore, integrated by data from a seafloor observatory (NEMO-SN1), to compute a lithospheric velocity model for the western Ionian Sea, and relocate seismic events along major tectonic structures. Spatial changes in the depth distribution of earthquakes highlight a major lithospheric boundary constituted by the Ionian Fault, which separates two sectors where thickness of the seismogenic layer varies over 40 km. This regional tectonic boundary represents the eastern limit of a domain characterized by thinner lithosphere, arc-orthogonal extension, and transtensional tectonic deformation. Occurrence of a few thrust-type earthquakes in the accretionary wedge may suggest a locked subduction interface in a complex tectonic setting, which involves the interplay between arc-orthogonal extension and plate convergence. We finally note that distribution of earthquakes and associated extensional deformation in the Messina Straits region could be explained by right-lateral displacement along the Ionian Fault. This observation could shed new light on proposed mechanisms for the 1908 Messina earthquake.


2013 ◽  
Vol 479-480 ◽  
pp. 1139-1143
Author(s):  
Wen Yi Hung ◽  
Chung Jung Lee ◽  
Wen Ya Chung ◽  
Chen Hui Tsai ◽  
Ting Chen ◽  
...  

Dramatic failure of pile foundations caused by the soil liquefaction was founded leading to many studies for investigating the seismic behavior of pile. The failures were often accompanied with settlement, lateral displacement and tilting of superstructures. Therefore soil-structure interaction effects must be properly considered in the pile design. Two tests by using the centrifuge shaking table were conducted at an acceleration field of 80 g to investigate the seismic response of piles attached with different tip mass and embedded in liquefied or non-liquefied deposits during shaking. It was found that the maximum bending moment of pile occurs at the depth of 4 m and 5 m for dry sand and saturated sand models, respectively. The more tip mass leads to the more lateral displacement of pile head and the more residual bending moment.


Sign in / Sign up

Export Citation Format

Share Document